00001 /* sstemr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static real c_b18 = .003f; 00020 00021 /* Subroutine */ int sstemr_(char *jobz, char *range, integer *n, real *d__, 00022 real *e, real *vl, real *vu, integer *il, integer *iu, integer *m, 00023 real *w, real *z__, integer *ldz, integer *nzc, integer *isuppz, 00024 logical *tryrac, real *work, integer *lwork, integer *iwork, integer * 00025 liwork, integer *info) 00026 { 00027 /* System generated locals */ 00028 integer z_dim1, z_offset, i__1, i__2; 00029 real r__1, r__2; 00030 00031 /* Builtin functions */ 00032 double sqrt(doublereal); 00033 00034 /* Local variables */ 00035 integer i__, j; 00036 real r1, r2; 00037 integer jj; 00038 real cs; 00039 integer in; 00040 real sn, wl, wu; 00041 integer iil, iiu; 00042 real eps, tmp; 00043 integer indd, iend, jblk, wend; 00044 real rmin, rmax; 00045 integer itmp; 00046 real tnrm; 00047 integer inde2; 00048 extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *) 00049 ; 00050 integer itmp2; 00051 real rtol1, rtol2, scale; 00052 integer indgp; 00053 extern logical lsame_(char *, char *); 00054 integer iinfo; 00055 extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); 00056 integer iindw, ilast, lwmin; 00057 extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 00058 integer *), sswap_(integer *, real *, integer *, real *, integer * 00059 ); 00060 logical wantz; 00061 extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real * 00062 , real *, real *); 00063 logical alleig; 00064 integer ibegin; 00065 logical indeig; 00066 integer iindbl; 00067 logical valeig; 00068 extern doublereal slamch_(char *); 00069 integer wbegin; 00070 real safmin; 00071 extern /* Subroutine */ int xerbla_(char *, integer *); 00072 real bignum; 00073 integer inderr, iindwk, indgrs, offset; 00074 extern /* Subroutine */ int slarrc_(char *, integer *, real *, real *, 00075 real *, real *, real *, integer *, integer *, integer *, integer * 00076 ), slarre_(char *, integer *, real *, real *, integer *, 00077 integer *, real *, real *, real *, real *, real *, real *, 00078 integer *, integer *, integer *, real *, real *, real *, integer * 00079 , integer *, real *, real *, real *, integer *, integer *) 00080 ; 00081 real thresh; 00082 integer iinspl, indwrk, ifirst, liwmin, nzcmin; 00083 real pivmin; 00084 extern doublereal slanst_(char *, integer *, real *, real *); 00085 extern /* Subroutine */ int slarrj_(integer *, real *, real *, integer *, 00086 integer *, real *, integer *, real *, real *, real *, integer *, 00087 real *, real *, integer *), slarrr_(integer *, real *, real *, 00088 integer *); 00089 integer nsplit; 00090 extern /* Subroutine */ int slarrv_(integer *, real *, real *, real *, 00091 real *, real *, integer *, integer *, integer *, integer *, real * 00092 , real *, real *, real *, real *, real *, integer *, integer *, 00093 real *, real *, integer *, integer *, real *, integer *, integer * 00094 ); 00095 real smlnum; 00096 extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *); 00097 logical lquery, zquery; 00098 00099 00100 /* -- LAPACK computational routine (version 3.2) -- */ 00101 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00102 /* November 2006 */ 00103 00104 /* .. Scalar Arguments .. */ 00105 /* .. */ 00106 /* .. Array Arguments .. */ 00107 /* .. */ 00108 00109 /* Purpose */ 00110 /* ======= */ 00111 00112 /* SSTEMR computes selected eigenvalues and, optionally, eigenvectors */ 00113 /* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */ 00114 /* a well defined set of pairwise different real eigenvalues, the corresponding */ 00115 /* real eigenvectors are pairwise orthogonal. */ 00116 00117 /* The spectrum may be computed either completely or partially by specifying */ 00118 /* either an interval (VL,VU] or a range of indices IL:IU for the desired */ 00119 /* eigenvalues. */ 00120 00121 /* Depending on the number of desired eigenvalues, these are computed either */ 00122 /* by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */ 00123 /* computed by the use of various suitable L D L^T factorizations near clusters */ 00124 /* of close eigenvalues (referred to as RRRs, Relatively Robust */ 00125 /* Representations). An informal sketch of the algorithm follows. */ 00126 00127 /* For each unreduced block (submatrix) of T, */ 00128 /* (a) Compute T - sigma I = L D L^T, so that L and D */ 00129 /* define all the wanted eigenvalues to high relative accuracy. */ 00130 /* This means that small relative changes in the entries of D and L */ 00131 /* cause only small relative changes in the eigenvalues and */ 00132 /* eigenvectors. The standard (unfactored) representation of the */ 00133 /* tridiagonal matrix T does not have this property in general. */ 00134 /* (b) Compute the eigenvalues to suitable accuracy. */ 00135 /* If the eigenvectors are desired, the algorithm attains full */ 00136 /* accuracy of the computed eigenvalues only right before */ 00137 /* the corresponding vectors have to be computed, see steps c) and d). */ 00138 /* (c) For each cluster of close eigenvalues, select a new */ 00139 /* shift close to the cluster, find a new factorization, and refine */ 00140 /* the shifted eigenvalues to suitable accuracy. */ 00141 /* (d) For each eigenvalue with a large enough relative separation compute */ 00142 /* the corresponding eigenvector by forming a rank revealing twisted */ 00143 /* factorization. Go back to (c) for any clusters that remain. */ 00144 00145 /* For more details, see: */ 00146 /* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */ 00147 /* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */ 00148 /* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */ 00149 /* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */ 00150 /* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */ 00151 /* 2004. Also LAPACK Working Note 154. */ 00152 /* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */ 00153 /* tridiagonal eigenvalue/eigenvector problem", */ 00154 /* Computer Science Division Technical Report No. UCB/CSD-97-971, */ 00155 /* UC Berkeley, May 1997. */ 00156 00157 /* Notes: */ 00158 /* 1.SSTEMR works only on machines which follow IEEE-754 */ 00159 /* floating-point standard in their handling of infinities and NaNs. */ 00160 /* This permits the use of efficient inner loops avoiding a check for */ 00161 /* zero divisors. */ 00162 00163 /* Arguments */ 00164 /* ========= */ 00165 00166 /* JOBZ (input) CHARACTER*1 */ 00167 /* = 'N': Compute eigenvalues only; */ 00168 /* = 'V': Compute eigenvalues and eigenvectors. */ 00169 00170 /* RANGE (input) CHARACTER*1 */ 00171 /* = 'A': all eigenvalues will be found. */ 00172 /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ 00173 /* will be found. */ 00174 /* = 'I': the IL-th through IU-th eigenvalues will be found. */ 00175 00176 /* N (input) INTEGER */ 00177 /* The order of the matrix. N >= 0. */ 00178 00179 /* D (input/output) REAL array, dimension (N) */ 00180 /* On entry, the N diagonal elements of the tridiagonal matrix */ 00181 /* T. On exit, D is overwritten. */ 00182 00183 /* E (input/output) REAL array, dimension (N) */ 00184 /* On entry, the (N-1) subdiagonal elements of the tridiagonal */ 00185 /* matrix T in elements 1 to N-1 of E. E(N) need not be set on */ 00186 /* input, but is used internally as workspace. */ 00187 /* On exit, E is overwritten. */ 00188 00189 /* VL (input) REAL */ 00190 /* VU (input) REAL */ 00191 /* If RANGE='V', the lower and upper bounds of the interval to */ 00192 /* be searched for eigenvalues. VL < VU. */ 00193 /* Not referenced if RANGE = 'A' or 'I'. */ 00194 00195 /* IL (input) INTEGER */ 00196 /* IU (input) INTEGER */ 00197 /* If RANGE='I', the indices (in ascending order) of the */ 00198 /* smallest and largest eigenvalues to be returned. */ 00199 /* 1 <= IL <= IU <= N, if N > 0. */ 00200 /* Not referenced if RANGE = 'A' or 'V'. */ 00201 00202 /* M (output) INTEGER */ 00203 /* The total number of eigenvalues found. 0 <= M <= N. */ 00204 /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ 00205 00206 /* W (output) REAL array, dimension (N) */ 00207 /* The first M elements contain the selected eigenvalues in */ 00208 /* ascending order. */ 00209 00210 /* Z (output) REAL array, dimension (LDZ, max(1,M) ) */ 00211 /* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */ 00212 /* contain the orthonormal eigenvectors of the matrix T */ 00213 /* corresponding to the selected eigenvalues, with the i-th */ 00214 /* column of Z holding the eigenvector associated with W(i). */ 00215 /* If JOBZ = 'N', then Z is not referenced. */ 00216 /* Note: the user must ensure that at least max(1,M) columns are */ 00217 /* supplied in the array Z; if RANGE = 'V', the exact value of M */ 00218 /* is not known in advance and can be computed with a workspace */ 00219 /* query by setting NZC = -1, see below. */ 00220 00221 /* LDZ (input) INTEGER */ 00222 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00223 /* JOBZ = 'V', then LDZ >= max(1,N). */ 00224 00225 /* NZC (input) INTEGER */ 00226 /* The number of eigenvectors to be held in the array Z. */ 00227 /* If RANGE = 'A', then NZC >= max(1,N). */ 00228 /* If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */ 00229 /* If RANGE = 'I', then NZC >= IU-IL+1. */ 00230 /* If NZC = -1, then a workspace query is assumed; the */ 00231 /* routine calculates the number of columns of the array Z that */ 00232 /* are needed to hold the eigenvectors. */ 00233 /* This value is returned as the first entry of the Z array, and */ 00234 /* no error message related to NZC is issued by XERBLA. */ 00235 00236 /* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) */ 00237 /* The support of the eigenvectors in Z, i.e., the indices */ 00238 /* indicating the nonzero elements in Z. The i-th computed eigenvector */ 00239 /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ 00240 /* ISUPPZ( 2*i ). This is relevant in the case when the matrix */ 00241 /* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */ 00242 00243 /* TRYRAC (input/output) LOGICAL */ 00244 /* If TRYRAC.EQ..TRUE., indicates that the code should check whether */ 00245 /* the tridiagonal matrix defines its eigenvalues to high relative */ 00246 /* accuracy. If so, the code uses relative-accuracy preserving */ 00247 /* algorithms that might be (a bit) slower depending on the matrix. */ 00248 /* If the matrix does not define its eigenvalues to high relative */ 00249 /* accuracy, the code can uses possibly faster algorithms. */ 00250 /* If TRYRAC.EQ..FALSE., the code is not required to guarantee */ 00251 /* relatively accurate eigenvalues and can use the fastest possible */ 00252 /* techniques. */ 00253 /* On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */ 00254 /* does not define its eigenvalues to high relative accuracy. */ 00255 00256 /* WORK (workspace/output) REAL array, dimension (LWORK) */ 00257 /* On exit, if INFO = 0, WORK(1) returns the optimal */ 00258 /* (and minimal) LWORK. */ 00259 00260 /* LWORK (input) INTEGER */ 00261 /* The dimension of the array WORK. LWORK >= max(1,18*N) */ 00262 /* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. */ 00263 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00264 /* only calculates the optimal size of the WORK array, returns */ 00265 /* this value as the first entry of the WORK array, and no error */ 00266 /* message related to LWORK is issued by XERBLA. */ 00267 00268 /* IWORK (workspace/output) INTEGER array, dimension (LIWORK) */ 00269 /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ 00270 00271 /* LIWORK (input) INTEGER */ 00272 /* The dimension of the array IWORK. LIWORK >= max(1,10*N) */ 00273 /* if the eigenvectors are desired, and LIWORK >= max(1,8*N) */ 00274 /* if only the eigenvalues are to be computed. */ 00275 /* If LIWORK = -1, then a workspace query is assumed; the */ 00276 /* routine only calculates the optimal size of the IWORK array, */ 00277 /* returns this value as the first entry of the IWORK array, and */ 00278 /* no error message related to LIWORK is issued by XERBLA. */ 00279 00280 /* INFO (output) INTEGER */ 00281 /* On exit, INFO */ 00282 /* = 0: successful exit */ 00283 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00284 /* > 0: if INFO = 1X, internal error in SLARRE, */ 00285 /* if INFO = 2X, internal error in SLARRV. */ 00286 /* Here, the digit X = ABS( IINFO ) < 10, where IINFO is */ 00287 /* the nonzero error code returned by SLARRE or */ 00288 /* SLARRV, respectively. */ 00289 00290 00291 /* Further Details */ 00292 /* =============== */ 00293 00294 /* Based on contributions by */ 00295 /* Beresford Parlett, University of California, Berkeley, USA */ 00296 /* Jim Demmel, University of California, Berkeley, USA */ 00297 /* Inderjit Dhillon, University of Texas, Austin, USA */ 00298 /* Osni Marques, LBNL/NERSC, USA */ 00299 /* Christof Voemel, University of California, Berkeley, USA */ 00300 00301 /* ===================================================================== */ 00302 00303 /* .. Parameters .. */ 00304 /* .. */ 00305 /* .. Local Scalars .. */ 00306 /* .. */ 00307 /* .. */ 00308 /* .. External Functions .. */ 00309 /* .. */ 00310 /* .. External Subroutines .. */ 00311 /* .. */ 00312 /* .. Intrinsic Functions .. */ 00313 /* .. */ 00314 /* .. Executable Statements .. */ 00315 00316 /* Test the input parameters. */ 00317 00318 /* Parameter adjustments */ 00319 --d__; 00320 --e; 00321 --w; 00322 z_dim1 = *ldz; 00323 z_offset = 1 + z_dim1; 00324 z__ -= z_offset; 00325 --isuppz; 00326 --work; 00327 --iwork; 00328 00329 /* Function Body */ 00330 wantz = lsame_(jobz, "V"); 00331 alleig = lsame_(range, "A"); 00332 valeig = lsame_(range, "V"); 00333 indeig = lsame_(range, "I"); 00334 00335 lquery = *lwork == -1 || *liwork == -1; 00336 zquery = *nzc == -1; 00337 /* SSTEMR needs WORK of size 6*N, IWORK of size 3*N. */ 00338 /* In addition, SLARRE needs WORK of size 6*N, IWORK of size 5*N. */ 00339 /* Furthermore, SLARRV needs WORK of size 12*N, IWORK of size 7*N. */ 00340 if (wantz) { 00341 lwmin = *n * 18; 00342 liwmin = *n * 10; 00343 } else { 00344 /* need less workspace if only the eigenvalues are wanted */ 00345 lwmin = *n * 12; 00346 liwmin = *n << 3; 00347 } 00348 wl = 0.f; 00349 wu = 0.f; 00350 iil = 0; 00351 iiu = 0; 00352 if (valeig) { 00353 /* We do not reference VL, VU in the cases RANGE = 'I','A' */ 00354 /* The interval (WL, WU] contains all the wanted eigenvalues. */ 00355 /* It is either given by the user or computed in SLARRE. */ 00356 wl = *vl; 00357 wu = *vu; 00358 } else if (indeig) { 00359 /* We do not reference IL, IU in the cases RANGE = 'V','A' */ 00360 iil = *il; 00361 iiu = *iu; 00362 } 00363 00364 *info = 0; 00365 if (! (wantz || lsame_(jobz, "N"))) { 00366 *info = -1; 00367 } else if (! (alleig || valeig || indeig)) { 00368 *info = -2; 00369 } else if (*n < 0) { 00370 *info = -3; 00371 } else if (valeig && *n > 0 && wu <= wl) { 00372 *info = -7; 00373 } else if (indeig && (iil < 1 || iil > *n)) { 00374 *info = -8; 00375 } else if (indeig && (iiu < iil || iiu > *n)) { 00376 *info = -9; 00377 } else if (*ldz < 1 || wantz && *ldz < *n) { 00378 *info = -13; 00379 } else if (*lwork < lwmin && ! lquery) { 00380 *info = -17; 00381 } else if (*liwork < liwmin && ! lquery) { 00382 *info = -19; 00383 } 00384 00385 /* Get machine constants. */ 00386 00387 safmin = slamch_("Safe minimum"); 00388 eps = slamch_("Precision"); 00389 smlnum = safmin / eps; 00390 bignum = 1.f / smlnum; 00391 rmin = sqrt(smlnum); 00392 /* Computing MIN */ 00393 r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin)); 00394 rmax = dmin(r__1,r__2); 00395 00396 if (*info == 0) { 00397 work[1] = (real) lwmin; 00398 iwork[1] = liwmin; 00399 00400 if (wantz && alleig) { 00401 nzcmin = *n; 00402 } else if (wantz && valeig) { 00403 slarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, & 00404 itmp2, info); 00405 } else if (wantz && indeig) { 00406 nzcmin = iiu - iil + 1; 00407 } else { 00408 /* WANTZ .EQ. FALSE. */ 00409 nzcmin = 0; 00410 } 00411 if (zquery && *info == 0) { 00412 z__[z_dim1 + 1] = (real) nzcmin; 00413 } else if (*nzc < nzcmin && ! zquery) { 00414 *info = -14; 00415 } 00416 } 00417 if (*info != 0) { 00418 00419 i__1 = -(*info); 00420 xerbla_("SSTEMR", &i__1); 00421 00422 return 0; 00423 } else if (lquery || zquery) { 00424 return 0; 00425 } 00426 00427 /* Handle N = 0, 1, and 2 cases immediately */ 00428 00429 *m = 0; 00430 if (*n == 0) { 00431 return 0; 00432 } 00433 00434 if (*n == 1) { 00435 if (alleig || indeig) { 00436 *m = 1; 00437 w[1] = d__[1]; 00438 } else { 00439 if (wl < d__[1] && wu >= d__[1]) { 00440 *m = 1; 00441 w[1] = d__[1]; 00442 } 00443 } 00444 if (wantz && ! zquery) { 00445 z__[z_dim1 + 1] = 1.f; 00446 isuppz[1] = 1; 00447 isuppz[2] = 1; 00448 } 00449 return 0; 00450 } 00451 00452 if (*n == 2) { 00453 if (! wantz) { 00454 slae2_(&d__[1], &e[1], &d__[2], &r1, &r2); 00455 } else if (wantz && ! zquery) { 00456 slaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn); 00457 } 00458 if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) { 00459 ++(*m); 00460 w[*m] = r2; 00461 if (wantz && ! zquery) { 00462 z__[*m * z_dim1 + 1] = -sn; 00463 z__[*m * z_dim1 + 2] = cs; 00464 /* Note: At most one of SN and CS can be zero. */ 00465 if (sn != 0.f) { 00466 if (cs != 0.f) { 00467 isuppz[(*m << 1) - 1] = 1; 00468 isuppz[(*m << 1) - 1] = 2; 00469 } else { 00470 isuppz[(*m << 1) - 1] = 1; 00471 isuppz[(*m << 1) - 1] = 1; 00472 } 00473 } else { 00474 isuppz[(*m << 1) - 1] = 2; 00475 isuppz[*m * 2] = 2; 00476 } 00477 } 00478 } 00479 if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) { 00480 ++(*m); 00481 w[*m] = r1; 00482 if (wantz && ! zquery) { 00483 z__[*m * z_dim1 + 1] = cs; 00484 z__[*m * z_dim1 + 2] = sn; 00485 /* Note: At most one of SN and CS can be zero. */ 00486 if (sn != 0.f) { 00487 if (cs != 0.f) { 00488 isuppz[(*m << 1) - 1] = 1; 00489 isuppz[(*m << 1) - 1] = 2; 00490 } else { 00491 isuppz[(*m << 1) - 1] = 1; 00492 isuppz[(*m << 1) - 1] = 1; 00493 } 00494 } else { 00495 isuppz[(*m << 1) - 1] = 2; 00496 isuppz[*m * 2] = 2; 00497 } 00498 } 00499 } 00500 return 0; 00501 } 00502 /* Continue with general N */ 00503 indgrs = 1; 00504 inderr = (*n << 1) + 1; 00505 indgp = *n * 3 + 1; 00506 indd = (*n << 2) + 1; 00507 inde2 = *n * 5 + 1; 00508 indwrk = *n * 6 + 1; 00509 00510 iinspl = 1; 00511 iindbl = *n + 1; 00512 iindw = (*n << 1) + 1; 00513 iindwk = *n * 3 + 1; 00514 00515 /* Scale matrix to allowable range, if necessary. */ 00516 /* The allowable range is related to the PIVMIN parameter; see the */ 00517 /* comments in SLARRD. The preference for scaling small values */ 00518 /* up is heuristic; we expect users' matrices not to be close to the */ 00519 /* RMAX threshold. */ 00520 00521 scale = 1.f; 00522 tnrm = slanst_("M", n, &d__[1], &e[1]); 00523 if (tnrm > 0.f && tnrm < rmin) { 00524 scale = rmin / tnrm; 00525 } else if (tnrm > rmax) { 00526 scale = rmax / tnrm; 00527 } 00528 if (scale != 1.f) { 00529 sscal_(n, &scale, &d__[1], &c__1); 00530 i__1 = *n - 1; 00531 sscal_(&i__1, &scale, &e[1], &c__1); 00532 tnrm *= scale; 00533 if (valeig) { 00534 /* If eigenvalues in interval have to be found, */ 00535 /* scale (WL, WU] accordingly */ 00536 wl *= scale; 00537 wu *= scale; 00538 } 00539 } 00540 00541 /* Compute the desired eigenvalues of the tridiagonal after splitting */ 00542 /* into smaller subblocks if the corresponding off-diagonal elements */ 00543 /* are small */ 00544 /* THRESH is the splitting parameter for SLARRE */ 00545 /* A negative THRESH forces the old splitting criterion based on the */ 00546 /* size of the off-diagonal. A positive THRESH switches to splitting */ 00547 /* which preserves relative accuracy. */ 00548 00549 if (*tryrac) { 00550 /* Test whether the matrix warrants the more expensive relative approach. */ 00551 slarrr_(n, &d__[1], &e[1], &iinfo); 00552 } else { 00553 /* The user does not care about relative accurately eigenvalues */ 00554 iinfo = -1; 00555 } 00556 /* Set the splitting criterion */ 00557 if (iinfo == 0) { 00558 thresh = eps; 00559 } else { 00560 thresh = -eps; 00561 /* relative accuracy is desired but T does not guarantee it */ 00562 *tryrac = FALSE_; 00563 } 00564 00565 if (*tryrac) { 00566 /* Copy original diagonal, needed to guarantee relative accuracy */ 00567 scopy_(n, &d__[1], &c__1, &work[indd], &c__1); 00568 } 00569 /* Store the squares of the offdiagonal values of T */ 00570 i__1 = *n - 1; 00571 for (j = 1; j <= i__1; ++j) { 00572 /* Computing 2nd power */ 00573 r__1 = e[j]; 00574 work[inde2 + j - 1] = r__1 * r__1; 00575 /* L5: */ 00576 } 00577 /* Set the tolerance parameters for bisection */ 00578 if (! wantz) { 00579 /* SLARRE computes the eigenvalues to full precision. */ 00580 rtol1 = eps * 4.f; 00581 rtol2 = eps * 4.f; 00582 } else { 00583 /* SLARRE computes the eigenvalues to less than full precision. */ 00584 /* SLARRV will refine the eigenvalue approximations, and we can */ 00585 /* need less accurate initial bisection in SLARRE. */ 00586 /* Note: these settings do only affect the subset case and SLARRE */ 00587 /* Computing MAX */ 00588 r__1 = sqrt(eps) * .05f, r__2 = eps * 4.f; 00589 rtol1 = dmax(r__1,r__2); 00590 /* Computing MAX */ 00591 r__1 = sqrt(eps) * .005f, r__2 = eps * 4.f; 00592 rtol2 = dmax(r__1,r__2); 00593 } 00594 slarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], & 00595 rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &work[ 00596 inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &work[ 00597 indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo); 00598 if (iinfo != 0) { 00599 *info = abs(iinfo) + 10; 00600 return 0; 00601 } 00602 /* Note that if RANGE .NE. 'V', SLARRE computes bounds on the desired */ 00603 /* part of the spectrum. All desired eigenvalues are contained in */ 00604 /* (WL,WU] */ 00605 if (wantz) { 00606 00607 /* Compute the desired eigenvectors corresponding to the computed */ 00608 /* eigenvalues */ 00609 00610 slarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, & 00611 c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &work[ 00612 indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs], &z__[ 00613 z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[iindwk], & 00614 iinfo); 00615 if (iinfo != 0) { 00616 *info = abs(iinfo) + 20; 00617 return 0; 00618 } 00619 } else { 00620 /* SLARRE computes eigenvalues of the (shifted) root representation */ 00621 /* SLARRV returns the eigenvalues of the unshifted matrix. */ 00622 /* However, if the eigenvectors are not desired by the user, we need */ 00623 /* to apply the corresponding shifts from SLARRE to obtain the */ 00624 /* eigenvalues of the original matrix. */ 00625 i__1 = *m; 00626 for (j = 1; j <= i__1; ++j) { 00627 itmp = iwork[iindbl + j - 1]; 00628 w[j] += e[iwork[iinspl + itmp - 1]]; 00629 /* L20: */ 00630 } 00631 } 00632 00633 if (*tryrac) { 00634 /* Refine computed eigenvalues so that they are relatively accurate */ 00635 /* with respect to the original matrix T. */ 00636 ibegin = 1; 00637 wbegin = 1; 00638 i__1 = iwork[iindbl + *m - 1]; 00639 for (jblk = 1; jblk <= i__1; ++jblk) { 00640 iend = iwork[iinspl + jblk - 1]; 00641 in = iend - ibegin + 1; 00642 wend = wbegin - 1; 00643 /* check if any eigenvalues have to be refined in this block */ 00644 L36: 00645 if (wend < *m) { 00646 if (iwork[iindbl + wend] == jblk) { 00647 ++wend; 00648 goto L36; 00649 } 00650 } 00651 if (wend < wbegin) { 00652 ibegin = iend + 1; 00653 goto L39; 00654 } 00655 offset = iwork[iindw + wbegin - 1] - 1; 00656 ifirst = iwork[iindw + wbegin - 1]; 00657 ilast = iwork[iindw + wend - 1]; 00658 rtol2 = eps * 4.f; 00659 slarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 1], 00660 &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &work[ 00661 inderr + wbegin - 1], &work[indwrk], &iwork[iindwk], & 00662 pivmin, &tnrm, &iinfo); 00663 ibegin = iend + 1; 00664 wbegin = wend + 1; 00665 L39: 00666 ; 00667 } 00668 } 00669 00670 /* If matrix was scaled, then rescale eigenvalues appropriately. */ 00671 00672 if (scale != 1.f) { 00673 r__1 = 1.f / scale; 00674 sscal_(m, &r__1, &w[1], &c__1); 00675 } 00676 00677 /* If eigenvalues are not in increasing order, then sort them, */ 00678 /* possibly along with eigenvectors. */ 00679 00680 if (nsplit > 1) { 00681 if (! wantz) { 00682 slasrt_("I", m, &w[1], &iinfo); 00683 if (iinfo != 0) { 00684 *info = 3; 00685 return 0; 00686 } 00687 } else { 00688 i__1 = *m - 1; 00689 for (j = 1; j <= i__1; ++j) { 00690 i__ = 0; 00691 tmp = w[j]; 00692 i__2 = *m; 00693 for (jj = j + 1; jj <= i__2; ++jj) { 00694 if (w[jj] < tmp) { 00695 i__ = jj; 00696 tmp = w[jj]; 00697 } 00698 /* L50: */ 00699 } 00700 if (i__ != 0) { 00701 w[i__] = w[j]; 00702 w[j] = tmp; 00703 if (wantz) { 00704 sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * 00705 z_dim1 + 1], &c__1); 00706 itmp = isuppz[(i__ << 1) - 1]; 00707 isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1]; 00708 isuppz[(j << 1) - 1] = itmp; 00709 itmp = isuppz[i__ * 2]; 00710 isuppz[i__ * 2] = isuppz[j * 2]; 00711 isuppz[j * 2] = itmp; 00712 } 00713 } 00714 /* L60: */ 00715 } 00716 } 00717 } 00718 00719 00720 work[1] = (real) lwmin; 00721 iwork[1] = liwmin; 00722 return 0; 00723 00724 /* End of SSTEMR */ 00725 00726 } /* sstemr_ */