ssptrd.c
Go to the documentation of this file.
00001 /* ssptrd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static real c_b8 = 0.f;
00020 static real c_b14 = -1.f;
00021 
00022 /* Subroutine */ int ssptrd_(char *uplo, integer *n, real *ap, real *d__, 
00023         real *e, real *tau, integer *info)
00024 {
00025     /* System generated locals */
00026     integer i__1, i__2;
00027 
00028     /* Local variables */
00029     integer i__, i1, ii, i1i1;
00030     real taui;
00031     extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
00032     extern /* Subroutine */ int sspr2_(char *, integer *, real *, real *, 
00033             integer *, real *, integer *, real *);
00034     real alpha;
00035     extern logical lsame_(char *, char *);
00036     logical upper;
00037     extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, 
00038             real *, integer *), sspmv_(char *, integer *, real *, real *, 
00039             real *, integer *, real *, real *, integer *), xerbla_(
00040             char *, integer *), slarfg_(integer *, real *, real *, 
00041             integer *, real *);
00042 
00043 
00044 /*  -- LAPACK routine (version 3.2) -- */
00045 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00046 /*     November 2006 */
00047 
00048 /*     .. Scalar Arguments .. */
00049 /*     .. */
00050 /*     .. Array Arguments .. */
00051 /*     .. */
00052 
00053 /*  Purpose */
00054 /*  ======= */
00055 
00056 /*  SSPTRD reduces a real symmetric matrix A stored in packed form to */
00057 /*  symmetric tridiagonal form T by an orthogonal similarity */
00058 /*  transformation: Q**T * A * Q = T. */
00059 
00060 /*  Arguments */
00061 /*  ========= */
00062 
00063 /*  UPLO    (input) CHARACTER*1 */
00064 /*          = 'U':  Upper triangle of A is stored; */
00065 /*          = 'L':  Lower triangle of A is stored. */
00066 
00067 /*  N       (input) INTEGER */
00068 /*          The order of the matrix A.  N >= 0. */
00069 
00070 /*  AP      (input/output) REAL array, dimension (N*(N+1)/2) */
00071 /*          On entry, the upper or lower triangle of the symmetric matrix */
00072 /*          A, packed columnwise in a linear array.  The j-th column of A */
00073 /*          is stored in the array AP as follows: */
00074 /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
00075 /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
00076 /*          On exit, if UPLO = 'U', the diagonal and first superdiagonal */
00077 /*          of A are overwritten by the corresponding elements of the */
00078 /*          tridiagonal matrix T, and the elements above the first */
00079 /*          superdiagonal, with the array TAU, represent the orthogonal */
00080 /*          matrix Q as a product of elementary reflectors; if UPLO */
00081 /*          = 'L', the diagonal and first subdiagonal of A are over- */
00082 /*          written by the corresponding elements of the tridiagonal */
00083 /*          matrix T, and the elements below the first subdiagonal, with */
00084 /*          the array TAU, represent the orthogonal matrix Q as a product */
00085 /*          of elementary reflectors. See Further Details. */
00086 
00087 /*  D       (output) REAL array, dimension (N) */
00088 /*          The diagonal elements of the tridiagonal matrix T: */
00089 /*          D(i) = A(i,i). */
00090 
00091 /*  E       (output) REAL array, dimension (N-1) */
00092 /*          The off-diagonal elements of the tridiagonal matrix T: */
00093 /*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
00094 
00095 /*  TAU     (output) REAL array, dimension (N-1) */
00096 /*          The scalar factors of the elementary reflectors (see Further */
00097 /*          Details). */
00098 
00099 /*  INFO    (output) INTEGER */
00100 /*          = 0:  successful exit */
00101 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00102 
00103 /*  Further Details */
00104 /*  =============== */
00105 
00106 /*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
00107 /*  reflectors */
00108 
00109 /*     Q = H(n-1) . . . H(2) H(1). */
00110 
00111 /*  Each H(i) has the form */
00112 
00113 /*     H(i) = I - tau * v * v' */
00114 
00115 /*  where tau is a real scalar, and v is a real vector with */
00116 /*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, */
00117 /*  overwriting A(1:i-1,i+1), and tau is stored in TAU(i). */
00118 
00119 /*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
00120 /*  reflectors */
00121 
00122 /*     Q = H(1) H(2) . . . H(n-1). */
00123 
00124 /*  Each H(i) has the form */
00125 
00126 /*     H(i) = I - tau * v * v' */
00127 
00128 /*  where tau is a real scalar, and v is a real vector with */
00129 /*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, */
00130 /*  overwriting A(i+2:n,i), and tau is stored in TAU(i). */
00131 
00132 /*  ===================================================================== */
00133 
00134 /*     .. Parameters .. */
00135 /*     .. */
00136 /*     .. Local Scalars .. */
00137 /*     .. */
00138 /*     .. External Subroutines .. */
00139 /*     .. */
00140 /*     .. External Functions .. */
00141 /*     .. */
00142 /*     .. Executable Statements .. */
00143 
00144 /*     Test the input parameters */
00145 
00146     /* Parameter adjustments */
00147     --tau;
00148     --e;
00149     --d__;
00150     --ap;
00151 
00152     /* Function Body */
00153     *info = 0;
00154     upper = lsame_(uplo, "U");
00155     if (! upper && ! lsame_(uplo, "L")) {
00156         *info = -1;
00157     } else if (*n < 0) {
00158         *info = -2;
00159     }
00160     if (*info != 0) {
00161         i__1 = -(*info);
00162         xerbla_("SSPTRD", &i__1);
00163         return 0;
00164     }
00165 
00166 /*     Quick return if possible */
00167 
00168     if (*n <= 0) {
00169         return 0;
00170     }
00171 
00172     if (upper) {
00173 
00174 /*        Reduce the upper triangle of A. */
00175 /*        I1 is the index in AP of A(1,I+1). */
00176 
00177         i1 = *n * (*n - 1) / 2 + 1;
00178         for (i__ = *n - 1; i__ >= 1; --i__) {
00179 
00180 /*           Generate elementary reflector H(i) = I - tau * v * v' */
00181 /*           to annihilate A(1:i-1,i+1) */
00182 
00183             slarfg_(&i__, &ap[i1 + i__ - 1], &ap[i1], &c__1, &taui);
00184             e[i__] = ap[i1 + i__ - 1];
00185 
00186             if (taui != 0.f) {
00187 
00188 /*              Apply H(i) from both sides to A(1:i,1:i) */
00189 
00190                 ap[i1 + i__ - 1] = 1.f;
00191 
00192 /*              Compute  y := tau * A * v  storing y in TAU(1:i) */
00193 
00194                 sspmv_(uplo, &i__, &taui, &ap[1], &ap[i1], &c__1, &c_b8, &tau[
00195                         1], &c__1);
00196 
00197 /*              Compute  w := y - 1/2 * tau * (y'*v) * v */
00198 
00199                 alpha = taui * -.5f * sdot_(&i__, &tau[1], &c__1, &ap[i1], &
00200                         c__1);
00201                 saxpy_(&i__, &alpha, &ap[i1], &c__1, &tau[1], &c__1);
00202 
00203 /*              Apply the transformation as a rank-2 update: */
00204 /*                 A := A - v * w' - w * v' */
00205 
00206                 sspr2_(uplo, &i__, &c_b14, &ap[i1], &c__1, &tau[1], &c__1, &
00207                         ap[1]);
00208 
00209                 ap[i1 + i__ - 1] = e[i__];
00210             }
00211             d__[i__ + 1] = ap[i1 + i__];
00212             tau[i__] = taui;
00213             i1 -= i__;
00214 /* L10: */
00215         }
00216         d__[1] = ap[1];
00217     } else {
00218 
00219 /*        Reduce the lower triangle of A. II is the index in AP of */
00220 /*        A(i,i) and I1I1 is the index of A(i+1,i+1). */
00221 
00222         ii = 1;
00223         i__1 = *n - 1;
00224         for (i__ = 1; i__ <= i__1; ++i__) {
00225             i1i1 = ii + *n - i__ + 1;
00226 
00227 /*           Generate elementary reflector H(i) = I - tau * v * v' */
00228 /*           to annihilate A(i+2:n,i) */
00229 
00230             i__2 = *n - i__;
00231             slarfg_(&i__2, &ap[ii + 1], &ap[ii + 2], &c__1, &taui);
00232             e[i__] = ap[ii + 1];
00233 
00234             if (taui != 0.f) {
00235 
00236 /*              Apply H(i) from both sides to A(i+1:n,i+1:n) */
00237 
00238                 ap[ii + 1] = 1.f;
00239 
00240 /*              Compute  y := tau * A * v  storing y in TAU(i:n-1) */
00241 
00242                 i__2 = *n - i__;
00243                 sspmv_(uplo, &i__2, &taui, &ap[i1i1], &ap[ii + 1], &c__1, &
00244                         c_b8, &tau[i__], &c__1);
00245 
00246 /*              Compute  w := y - 1/2 * tau * (y'*v) * v */
00247 
00248                 i__2 = *n - i__;
00249                 alpha = taui * -.5f * sdot_(&i__2, &tau[i__], &c__1, &ap[ii + 
00250                         1], &c__1);
00251                 i__2 = *n - i__;
00252                 saxpy_(&i__2, &alpha, &ap[ii + 1], &c__1, &tau[i__], &c__1);
00253 
00254 /*              Apply the transformation as a rank-2 update: */
00255 /*                 A := A - v * w' - w * v' */
00256 
00257                 i__2 = *n - i__;
00258                 sspr2_(uplo, &i__2, &c_b14, &ap[ii + 1], &c__1, &tau[i__], &
00259                         c__1, &ap[i1i1]);
00260 
00261                 ap[ii + 1] = e[i__];
00262             }
00263             d__[i__] = ap[ii];
00264             tau[i__] = taui;
00265             ii = i1i1;
00266 /* L20: */
00267         }
00268         d__[*n] = ap[ii];
00269     }
00270 
00271     return 0;
00272 
00273 /*     End of SSPTRD */
00274 
00275 } /* ssptrd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13