sspr2.c
Go to the documentation of this file.
00001 /* sspr2.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int sspr2_(char *uplo, integer *n, real *alpha, real *x, 
00017         integer *incx, real *y, integer *incy, real *ap)
00018 {
00019     /* System generated locals */
00020     integer i__1, i__2;
00021 
00022     /* Local variables */
00023     integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
00024     real temp1, temp2;
00025     extern logical lsame_(char *, char *);
00026     extern /* Subroutine */ int xerbla_(char *, integer *);
00027 
00028 /*     .. Scalar Arguments .. */
00029 /*     .. */
00030 /*     .. Array Arguments .. */
00031 /*     .. */
00032 
00033 /*  Purpose */
00034 /*  ======= */
00035 
00036 /*  SSPR2  performs the symmetric rank 2 operation */
00037 
00038 /*     A := alpha*x*y' + alpha*y*x' + A, */
00039 
00040 /*  where alpha is a scalar, x and y are n element vectors and A is an */
00041 /*  n by n symmetric matrix, supplied in packed form. */
00042 
00043 /*  Arguments */
00044 /*  ========== */
00045 
00046 /*  UPLO   - CHARACTER*1. */
00047 /*           On entry, UPLO specifies whether the upper or lower */
00048 /*           triangular part of the matrix A is supplied in the packed */
00049 /*           array AP as follows: */
00050 
00051 /*              UPLO = 'U' or 'u'   The upper triangular part of A is */
00052 /*                                  supplied in AP. */
00053 
00054 /*              UPLO = 'L' or 'l'   The lower triangular part of A is */
00055 /*                                  supplied in AP. */
00056 
00057 /*           Unchanged on exit. */
00058 
00059 /*  N      - INTEGER. */
00060 /*           On entry, N specifies the order of the matrix A. */
00061 /*           N must be at least zero. */
00062 /*           Unchanged on exit. */
00063 
00064 /*  ALPHA  - REAL            . */
00065 /*           On entry, ALPHA specifies the scalar alpha. */
00066 /*           Unchanged on exit. */
00067 
00068 /*  X      - REAL             array of dimension at least */
00069 /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
00070 /*           Before entry, the incremented array X must contain the n */
00071 /*           element vector x. */
00072 /*           Unchanged on exit. */
00073 
00074 /*  INCX   - INTEGER. */
00075 /*           On entry, INCX specifies the increment for the elements of */
00076 /*           X. INCX must not be zero. */
00077 /*           Unchanged on exit. */
00078 
00079 /*  Y      - REAL             array of dimension at least */
00080 /*           ( 1 + ( n - 1 )*abs( INCY ) ). */
00081 /*           Before entry, the incremented array Y must contain the n */
00082 /*           element vector y. */
00083 /*           Unchanged on exit. */
00084 
00085 /*  INCY   - INTEGER. */
00086 /*           On entry, INCY specifies the increment for the elements of */
00087 /*           Y. INCY must not be zero. */
00088 /*           Unchanged on exit. */
00089 
00090 /*  AP     - REAL             array of DIMENSION at least */
00091 /*           ( ( n*( n + 1 ) )/2 ). */
00092 /*           Before entry with  UPLO = 'U' or 'u', the array AP must */
00093 /*           contain the upper triangular part of the symmetric matrix */
00094 /*           packed sequentially, column by column, so that AP( 1 ) */
00095 /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
00096 /*           and a( 2, 2 ) respectively, and so on. On exit, the array */
00097 /*           AP is overwritten by the upper triangular part of the */
00098 /*           updated matrix. */
00099 /*           Before entry with UPLO = 'L' or 'l', the array AP must */
00100 /*           contain the lower triangular part of the symmetric matrix */
00101 /*           packed sequentially, column by column, so that AP( 1 ) */
00102 /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
00103 /*           and a( 3, 1 ) respectively, and so on. On exit, the array */
00104 /*           AP is overwritten by the lower triangular part of the */
00105 /*           updated matrix. */
00106 
00107 
00108 /*  Level 2 Blas routine. */
00109 
00110 /*  -- Written on 22-October-1986. */
00111 /*     Jack Dongarra, Argonne National Lab. */
00112 /*     Jeremy Du Croz, Nag Central Office. */
00113 /*     Sven Hammarling, Nag Central Office. */
00114 /*     Richard Hanson, Sandia National Labs. */
00115 
00116 
00117 /*     .. Parameters .. */
00118 /*     .. */
00119 /*     .. Local Scalars .. */
00120 /*     .. */
00121 /*     .. External Functions .. */
00122 /*     .. */
00123 /*     .. External Subroutines .. */
00124 /*     .. */
00125 
00126 /*     Test the input parameters. */
00127 
00128     /* Parameter adjustments */
00129     --ap;
00130     --y;
00131     --x;
00132 
00133     /* Function Body */
00134     info = 0;
00135     if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
00136         info = 1;
00137     } else if (*n < 0) {
00138         info = 2;
00139     } else if (*incx == 0) {
00140         info = 5;
00141     } else if (*incy == 0) {
00142         info = 7;
00143     }
00144     if (info != 0) {
00145         xerbla_("SSPR2 ", &info);
00146         return 0;
00147     }
00148 
00149 /*     Quick return if possible. */
00150 
00151     if (*n == 0 || *alpha == 0.f) {
00152         return 0;
00153     }
00154 
00155 /*     Set up the start points in X and Y if the increments are not both */
00156 /*     unity. */
00157 
00158     if (*incx != 1 || *incy != 1) {
00159         if (*incx > 0) {
00160             kx = 1;
00161         } else {
00162             kx = 1 - (*n - 1) * *incx;
00163         }
00164         if (*incy > 0) {
00165             ky = 1;
00166         } else {
00167             ky = 1 - (*n - 1) * *incy;
00168         }
00169         jx = kx;
00170         jy = ky;
00171     }
00172 
00173 /*     Start the operations. In this version the elements of the array AP */
00174 /*     are accessed sequentially with one pass through AP. */
00175 
00176     kk = 1;
00177     if (lsame_(uplo, "U")) {
00178 
00179 /*        Form  A  when upper triangle is stored in AP. */
00180 
00181         if (*incx == 1 && *incy == 1) {
00182             i__1 = *n;
00183             for (j = 1; j <= i__1; ++j) {
00184                 if (x[j] != 0.f || y[j] != 0.f) {
00185                     temp1 = *alpha * y[j];
00186                     temp2 = *alpha * x[j];
00187                     k = kk;
00188                     i__2 = j;
00189                     for (i__ = 1; i__ <= i__2; ++i__) {
00190                         ap[k] = ap[k] + x[i__] * temp1 + y[i__] * temp2;
00191                         ++k;
00192 /* L10: */
00193                     }
00194                 }
00195                 kk += j;
00196 /* L20: */
00197             }
00198         } else {
00199             i__1 = *n;
00200             for (j = 1; j <= i__1; ++j) {
00201                 if (x[jx] != 0.f || y[jy] != 0.f) {
00202                     temp1 = *alpha * y[jy];
00203                     temp2 = *alpha * x[jx];
00204                     ix = kx;
00205                     iy = ky;
00206                     i__2 = kk + j - 1;
00207                     for (k = kk; k <= i__2; ++k) {
00208                         ap[k] = ap[k] + x[ix] * temp1 + y[iy] * temp2;
00209                         ix += *incx;
00210                         iy += *incy;
00211 /* L30: */
00212                     }
00213                 }
00214                 jx += *incx;
00215                 jy += *incy;
00216                 kk += j;
00217 /* L40: */
00218             }
00219         }
00220     } else {
00221 
00222 /*        Form  A  when lower triangle is stored in AP. */
00223 
00224         if (*incx == 1 && *incy == 1) {
00225             i__1 = *n;
00226             for (j = 1; j <= i__1; ++j) {
00227                 if (x[j] != 0.f || y[j] != 0.f) {
00228                     temp1 = *alpha * y[j];
00229                     temp2 = *alpha * x[j];
00230                     k = kk;
00231                     i__2 = *n;
00232                     for (i__ = j; i__ <= i__2; ++i__) {
00233                         ap[k] = ap[k] + x[i__] * temp1 + y[i__] * temp2;
00234                         ++k;
00235 /* L50: */
00236                     }
00237                 }
00238                 kk = kk + *n - j + 1;
00239 /* L60: */
00240             }
00241         } else {
00242             i__1 = *n;
00243             for (j = 1; j <= i__1; ++j) {
00244                 if (x[jx] != 0.f || y[jy] != 0.f) {
00245                     temp1 = *alpha * y[jy];
00246                     temp2 = *alpha * x[jx];
00247                     ix = jx;
00248                     iy = jy;
00249                     i__2 = kk + *n - j;
00250                     for (k = kk; k <= i__2; ++k) {
00251                         ap[k] = ap[k] + x[ix] * temp1 + y[iy] * temp2;
00252                         ix += *incx;
00253                         iy += *incy;
00254 /* L70: */
00255                     }
00256                 }
00257                 jx += *incx;
00258                 jy += *incy;
00259                 kk = kk + *n - j + 1;
00260 /* L80: */
00261             }
00262         }
00263     }
00264 
00265     return 0;
00266 
00267 /*     End of SSPR2 . */
00268 
00269 } /* sspr2_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13