srqt02.c
Go to the documentation of this file.
00001 /* srqt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static real c_b4 = -1e10f;
00027 static real c_b10 = 0.f;
00028 static real c_b15 = -1.f;
00029 static real c_b16 = 1.f;
00030 
00031 /* Subroutine */ int srqt02_(integer *m, integer *n, integer *k, real *a, 
00032         real *af, real *q, real *r__, integer *lda, real *tau, real *work, 
00033         integer *lwork, real *rwork, real *result)
00034 {
00035     /* System generated locals */
00036     integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, 
00037             r_offset, i__1, i__2;
00038 
00039     /* Builtin functions */
00040     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00041 
00042     /* Local variables */
00043     real eps;
00044     integer info;
00045     real resid;
00046     extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
00047             integer *, real *, real *, integer *, real *, integer *, real *, 
00048             real *, integer *);
00049     real anorm;
00050     extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, 
00051             real *, real *, integer *, real *, real *, integer *);
00052     extern doublereal slamch_(char *), slange_(char *, integer *, 
00053             integer *, real *, integer *, real *);
00054     extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
00055             integer *, real *, integer *), slaset_(char *, integer *, 
00056             integer *, real *, real *, real *, integer *);
00057     extern doublereal slansy_(char *, char *, integer *, real *, integer *, 
00058             real *);
00059     extern /* Subroutine */ int sorgrq_(integer *, integer *, integer *, real 
00060             *, integer *, real *, real *, integer *, integer *);
00061 
00062 
00063 /*  -- LAPACK test routine (version 3.1) -- */
00064 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00065 /*     November 2006 */
00066 
00067 /*     .. Scalar Arguments .. */
00068 /*     .. */
00069 /*     .. Array Arguments .. */
00070 /*     .. */
00071 
00072 /*  Purpose */
00073 /*  ======= */
00074 
00075 /*  SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with */
00076 /*  orthonornmal rows that is defined as the product of k elementary */
00077 /*  reflectors. */
00078 
00079 /*  Given the RQ factorization of an m-by-n matrix A, SRQT02 generates */
00080 /*  the orthogonal matrix Q defined by the factorization of the last k */
00081 /*  rows of A; it compares R(m-k+1:m,n-m+1:n) with */
00082 /*  A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are */
00083 /*  orthonormal. */
00084 
00085 /*  Arguments */
00086 /*  ========= */
00087 
00088 /*  M       (input) INTEGER */
00089 /*          The number of rows of the matrix Q to be generated.  M >= 0. */
00090 
00091 /*  N       (input) INTEGER */
00092 /*          The number of columns of the matrix Q to be generated. */
00093 /*          N >= M >= 0. */
00094 
00095 /*  K       (input) INTEGER */
00096 /*          The number of elementary reflectors whose product defines the */
00097 /*          matrix Q. M >= K >= 0. */
00098 
00099 /*  A       (input) REAL array, dimension (LDA,N) */
00100 /*          The m-by-n matrix A which was factorized by SRQT01. */
00101 
00102 /*  AF      (input) REAL array, dimension (LDA,N) */
00103 /*          Details of the RQ factorization of A, as returned by SGERQF. */
00104 /*          See SGERQF for further details. */
00105 
00106 /*  Q       (workspace) REAL array, dimension (LDA,N) */
00107 
00108 /*  R       (workspace) REAL array, dimension (LDA,M) */
00109 
00110 /*  LDA     (input) INTEGER */
00111 /*          The leading dimension of the arrays A, AF, Q and L. LDA >= N. */
00112 
00113 /*  TAU     (input) REAL array, dimension (M) */
00114 /*          The scalar factors of the elementary reflectors corresponding */
00115 /*          to the RQ factorization in AF. */
00116 
00117 /*  WORK    (workspace) REAL array, dimension (LWORK) */
00118 
00119 /*  LWORK   (input) INTEGER */
00120 /*          The dimension of the array WORK. */
00121 
00122 /*  RWORK   (workspace) REAL array, dimension (M) */
00123 
00124 /*  RESULT  (output) REAL array, dimension (2) */
00125 /*          The test ratios: */
00126 /*          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) */
00127 /*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */
00128 
00129 /*  ===================================================================== */
00130 
00131 /*     .. Parameters .. */
00132 /*     .. */
00133 /*     .. Local Scalars .. */
00134 /*     .. */
00135 /*     .. External Functions .. */
00136 /*     .. */
00137 /*     .. External Subroutines .. */
00138 /*     .. */
00139 /*     .. Intrinsic Functions .. */
00140 /*     .. */
00141 /*     .. Scalars in Common .. */
00142 /*     .. */
00143 /*     .. Common blocks .. */
00144 /*     .. */
00145 /*     .. Executable Statements .. */
00146 
00147 /*     Quick return if possible */
00148 
00149     /* Parameter adjustments */
00150     r_dim1 = *lda;
00151     r_offset = 1 + r_dim1;
00152     r__ -= r_offset;
00153     q_dim1 = *lda;
00154     q_offset = 1 + q_dim1;
00155     q -= q_offset;
00156     af_dim1 = *lda;
00157     af_offset = 1 + af_dim1;
00158     af -= af_offset;
00159     a_dim1 = *lda;
00160     a_offset = 1 + a_dim1;
00161     a -= a_offset;
00162     --tau;
00163     --work;
00164     --rwork;
00165     --result;
00166 
00167     /* Function Body */
00168     if (*m == 0 || *n == 0 || *k == 0) {
00169         result[1] = 0.f;
00170         result[2] = 0.f;
00171         return 0;
00172     }
00173 
00174     eps = slamch_("Epsilon");
00175 
00176 /*     Copy the last k rows of the factorization to the array Q */
00177 
00178     slaset_("Full", m, n, &c_b4, &c_b4, &q[q_offset], lda);
00179     if (*k < *n) {
00180         i__1 = *n - *k;
00181         slacpy_("Full", k, &i__1, &af[*m - *k + 1 + af_dim1], lda, &q[*m - *k 
00182                 + 1 + q_dim1], lda);
00183     }
00184     if (*k > 1) {
00185         i__1 = *k - 1;
00186         i__2 = *k - 1;
00187         slacpy_("Lower", &i__1, &i__2, &af[*m - *k + 2 + (*n - *k + 1) * 
00188                 af_dim1], lda, &q[*m - *k + 2 + (*n - *k + 1) * q_dim1], lda);
00189     }
00190 
00191 /*     Generate the last n rows of the matrix Q */
00192 
00193     s_copy(srnamc_1.srnamt, "SORGRQ", (ftnlen)32, (ftnlen)6);
00194     sorgrq_(m, n, k, &q[q_offset], lda, &tau[*m - *k + 1], &work[1], lwork, &
00195             info);
00196 
00197 /*     Copy R(m-k+1:m,n-m+1:n) */
00198 
00199     slaset_("Full", k, m, &c_b10, &c_b10, &r__[*m - *k + 1 + (*n - *m + 1) * 
00200             r_dim1], lda);
00201     slacpy_("Upper", k, k, &af[*m - *k + 1 + (*n - *k + 1) * af_dim1], lda, &
00202             r__[*m - *k + 1 + (*n - *k + 1) * r_dim1], lda);
00203 
00204 /*     Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)' */
00205 
00206     sgemm_("No transpose", "Transpose", k, m, n, &c_b15, &a[*m - *k + 1 + 
00207             a_dim1], lda, &q[q_offset], lda, &c_b16, &r__[*m - *k + 1 + (*n - 
00208             *m + 1) * r_dim1], lda);
00209 
00210 /*     Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) . */
00211 
00212     anorm = slange_("1", k, n, &a[*m - *k + 1 + a_dim1], lda, &rwork[1]);
00213     resid = slange_("1", k, m, &r__[*m - *k + 1 + (*n - *m + 1) * r_dim1], 
00214             lda, &rwork[1]);
00215     if (anorm > 0.f) {
00216         result[1] = resid / (real) max(1,*n) / anorm / eps;
00217     } else {
00218         result[1] = 0.f;
00219     }
00220 
00221 /*     Compute I - Q*Q' */
00222 
00223     slaset_("Full", m, m, &c_b10, &c_b16, &r__[r_offset], lda);
00224     ssyrk_("Upper", "No transpose", m, n, &c_b15, &q[q_offset], lda, &c_b16, &
00225             r__[r_offset], lda);
00226 
00227 /*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */
00228 
00229     resid = slansy_("1", "Upper", m, &r__[r_offset], lda, &rwork[1]);
00230 
00231     result[2] = resid / (real) max(1,*n) / eps;
00232 
00233     return 0;
00234 
00235 /*     End of SRQT02 */
00236 
00237 } /* srqt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13