srqt01.c
Go to the documentation of this file.
00001 /* srqt01.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static real c_b6 = -1e10f;
00027 static real c_b13 = 0.f;
00028 static real c_b20 = -1.f;
00029 static real c_b21 = 1.f;
00030 
00031 /* Subroutine */ int srqt01_(integer *m, integer *n, real *a, real *af, real *
00032         q, real *r__, integer *lda, real *tau, real *work, integer *lwork, 
00033         real *rwork, real *result)
00034 {
00035     /* System generated locals */
00036     integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, 
00037             r_offset, i__1, i__2;
00038 
00039     /* Builtin functions */
00040     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00041 
00042     /* Local variables */
00043     real eps;
00044     integer info;
00045     real resid;
00046     extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
00047             integer *, real *, real *, integer *, real *, integer *, real *, 
00048             real *, integer *);
00049     real anorm;
00050     integer minmn;
00051     extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, 
00052             real *, real *, integer *, real *, real *, integer *);
00053     extern doublereal slamch_(char *), slange_(char *, integer *, 
00054             integer *, real *, integer *, real *);
00055     extern /* Subroutine */ int sgerqf_(integer *, integer *, real *, integer 
00056             *, real *, real *, integer *, integer *), slacpy_(char *, integer 
00057             *, integer *, real *, integer *, real *, integer *), 
00058             slaset_(char *, integer *, integer *, real *, real *, real *, 
00059             integer *);
00060     extern doublereal slansy_(char *, char *, integer *, real *, integer *, 
00061             real *);
00062     extern /* Subroutine */ int sorgrq_(integer *, integer *, integer *, real 
00063             *, integer *, real *, real *, integer *, integer *);
00064 
00065 
00066 /*  -- LAPACK test routine (version 3.1) -- */
00067 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00068 /*     November 2006 */
00069 
00070 /*     .. Scalar Arguments .. */
00071 /*     .. */
00072 /*     .. Array Arguments .. */
00073 /*     .. */
00074 
00075 /*  Purpose */
00076 /*  ======= */
00077 
00078 /*  SRQT01 tests SGERQF, which computes the RQ factorization of an m-by-n */
00079 /*  matrix A, and partially tests SORGRQ which forms the n-by-n */
00080 /*  orthogonal matrix Q. */
00081 
00082 /*  SRQT01 compares R with A*Q', and checks that Q is orthogonal. */
00083 
00084 /*  Arguments */
00085 /*  ========= */
00086 
00087 /*  M       (input) INTEGER */
00088 /*          The number of rows of the matrix A.  M >= 0. */
00089 
00090 /*  N       (input) INTEGER */
00091 /*          The number of columns of the matrix A.  N >= 0. */
00092 
00093 /*  A       (input) REAL array, dimension (LDA,N) */
00094 /*          The m-by-n matrix A. */
00095 
00096 /*  AF      (output) REAL array, dimension (LDA,N) */
00097 /*          Details of the RQ factorization of A, as returned by SGERQF. */
00098 /*          See SGERQF for further details. */
00099 
00100 /*  Q       (output) REAL array, dimension (LDA,N) */
00101 /*          The n-by-n orthogonal matrix Q. */
00102 
00103 /*  R       (workspace) REAL array, dimension (LDA,max(M,N)) */
00104 
00105 /*  LDA     (input) INTEGER */
00106 /*          The leading dimension of the arrays A, AF, Q and L. */
00107 /*          LDA >= max(M,N). */
00108 
00109 /*  TAU     (output) REAL array, dimension (min(M,N)) */
00110 /*          The scalar factors of the elementary reflectors, as returned */
00111 /*          by SGERQF. */
00112 
00113 /*  WORK    (workspace) REAL array, dimension (LWORK) */
00114 
00115 /*  LWORK   (input) INTEGER */
00116 /*          The dimension of the array WORK. */
00117 
00118 /*  RWORK   (workspace) REAL array, dimension (max(M,N)) */
00119 
00120 /*  RESULT  (output) REAL array, dimension (2) */
00121 /*          The test ratios: */
00122 /*          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) */
00123 /*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */
00124 
00125 /*  ===================================================================== */
00126 
00127 /*     .. Parameters .. */
00128 /*     .. */
00129 /*     .. Local Scalars .. */
00130 /*     .. */
00131 /*     .. External Functions .. */
00132 /*     .. */
00133 /*     .. External Subroutines .. */
00134 /*     .. */
00135 /*     .. Intrinsic Functions .. */
00136 /*     .. */
00137 /*     .. Scalars in Common .. */
00138 /*     .. */
00139 /*     .. Common blocks .. */
00140 /*     .. */
00141 /*     .. Executable Statements .. */
00142 
00143     /* Parameter adjustments */
00144     r_dim1 = *lda;
00145     r_offset = 1 + r_dim1;
00146     r__ -= r_offset;
00147     q_dim1 = *lda;
00148     q_offset = 1 + q_dim1;
00149     q -= q_offset;
00150     af_dim1 = *lda;
00151     af_offset = 1 + af_dim1;
00152     af -= af_offset;
00153     a_dim1 = *lda;
00154     a_offset = 1 + a_dim1;
00155     a -= a_offset;
00156     --tau;
00157     --work;
00158     --rwork;
00159     --result;
00160 
00161     /* Function Body */
00162     minmn = min(*m,*n);
00163     eps = slamch_("Epsilon");
00164 
00165 /*     Copy the matrix A to the array AF. */
00166 
00167     slacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda);
00168 
00169 /*     Factorize the matrix A in the array AF. */
00170 
00171     s_copy(srnamc_1.srnamt, "SGERQF", (ftnlen)32, (ftnlen)6);
00172     sgerqf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info);
00173 
00174 /*     Copy details of Q */
00175 
00176     slaset_("Full", n, n, &c_b6, &c_b6, &q[q_offset], lda);
00177     if (*m <= *n) {
00178         if (*m > 0 && *m < *n) {
00179             i__1 = *n - *m;
00180             slacpy_("Full", m, &i__1, &af[af_offset], lda, &q[*n - *m + 1 + 
00181                     q_dim1], lda);
00182         }
00183         if (*m > 1) {
00184             i__1 = *m - 1;
00185             i__2 = *m - 1;
00186             slacpy_("Lower", &i__1, &i__2, &af[(*n - *m + 1) * af_dim1 + 2], 
00187                     lda, &q[*n - *m + 2 + (*n - *m + 1) * q_dim1], lda);
00188         }
00189     } else {
00190         if (*n > 1) {
00191             i__1 = *n - 1;
00192             i__2 = *n - 1;
00193             slacpy_("Lower", &i__1, &i__2, &af[*m - *n + 2 + af_dim1], lda, &
00194                     q[q_dim1 + 2], lda);
00195         }
00196     }
00197 
00198 /*     Generate the n-by-n matrix Q */
00199 
00200     s_copy(srnamc_1.srnamt, "SORGRQ", (ftnlen)32, (ftnlen)6);
00201     sorgrq_(n, n, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);
00202 
00203 /*     Copy R */
00204 
00205     slaset_("Full", m, n, &c_b13, &c_b13, &r__[r_offset], lda);
00206     if (*m <= *n) {
00207         if (*m > 0) {
00208             slacpy_("Upper", m, m, &af[(*n - *m + 1) * af_dim1 + 1], lda, &
00209                     r__[(*n - *m + 1) * r_dim1 + 1], lda);
00210         }
00211     } else {
00212         if (*m > *n && *n > 0) {
00213             i__1 = *m - *n;
00214             slacpy_("Full", &i__1, n, &af[af_offset], lda, &r__[r_offset], 
00215                     lda);
00216         }
00217         if (*n > 0) {
00218             slacpy_("Upper", n, n, &af[*m - *n + 1 + af_dim1], lda, &r__[*m - 
00219                     *n + 1 + r_dim1], lda);
00220         }
00221     }
00222 
00223 /*     Compute R - A*Q' */
00224 
00225     sgemm_("No transpose", "Transpose", m, n, n, &c_b20, &a[a_offset], lda, &
00226             q[q_offset], lda, &c_b21, &r__[r_offset], lda);
00227 
00228 /*     Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) . */
00229 
00230     anorm = slange_("1", m, n, &a[a_offset], lda, &rwork[1]);
00231     resid = slange_("1", m, n, &r__[r_offset], lda, &rwork[1]);
00232     if (anorm > 0.f) {
00233         result[1] = resid / (real) max(1,*n) / anorm / eps;
00234     } else {
00235         result[1] = 0.f;
00236     }
00237 
00238 /*     Compute I - Q*Q' */
00239 
00240     slaset_("Full", n, n, &c_b13, &c_b21, &r__[r_offset], lda);
00241     ssyrk_("Upper", "No transpose", n, n, &c_b20, &q[q_offset], lda, &c_b21, &
00242             r__[r_offset], lda);
00243 
00244 /*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */
00245 
00246     resid = slansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]);
00247 
00248     result[2] = resid / (real) max(1,*n) / eps;
00249 
00250     return 0;
00251 
00252 /*     End of SRQT01 */
00253 
00254 } /* srqt01_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13