sqrt11.c
Go to the documentation of this file.
00001 /* sqrt11.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__7 = 7;
00019 static real c_b5 = 0.f;
00020 static real c_b6 = 1.f;
00021 
00022 doublereal sqrt11_(integer *m, integer *k, real *a, integer *lda, real *tau, 
00023         real *work, integer *lwork)
00024 {
00025     /* System generated locals */
00026     integer a_dim1, a_offset, i__1;
00027     real ret_val;
00028 
00029     /* Local variables */
00030     integer j, info;
00031     extern /* Subroutine */ int sorm2r_(char *, char *, integer *, integer *, 
00032             integer *, real *, integer *, real *, real *, integer *, real *, 
00033             integer *);
00034     extern doublereal slamch_(char *), slange_(char *, integer *, 
00035             integer *, real *, integer *, real *);
00036     extern /* Subroutine */ int xerbla_(char *, integer *), slaset_(
00037             char *, integer *, integer *, real *, real *, real *, integer *);
00038     real rdummy[1];
00039 
00040 
00041 /*  -- LAPACK routine (version 3.1) -- */
00042 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00043 /*     November 2006 */
00044 
00045 /*     .. Scalar Arguments .. */
00046 /*     .. */
00047 /*     .. Array Arguments .. */
00048 /*     .. */
00049 
00050 /*  Purpose */
00051 /*  ======= */
00052 
00053 /*  SQRT11 computes the test ratio */
00054 
00055 /*        || Q'*Q - I || / (eps * m) */
00056 
00057 /*  where the orthogonal matrix Q is represented as a product of */
00058 /*  elementary transformations.  Each transformation has the form */
00059 
00060 /*     H(k) = I - tau(k) v(k) v(k)' */
00061 
00062 /*  where tau(k) is stored in TAU(k) and v(k) is an m-vector of the form */
00063 /*  [ 0 ... 0 1 x(k) ]', where x(k) is a vector of length m-k stored */
00064 /*  in A(k+1:m,k). */
00065 
00066 /*  Arguments */
00067 /*  ========= */
00068 
00069 /*  M       (input) INTEGER */
00070 /*          The number of rows of the matrix A. */
00071 
00072 /*  K       (input) INTEGER */
00073 /*          The number of columns of A whose subdiagonal entries */
00074 /*          contain information about orthogonal transformations. */
00075 
00076 /*  A       (input) REAL array, dimension (LDA,K) */
00077 /*          The (possibly partial) output of a QR reduction routine. */
00078 
00079 /*  LDA     (input) INTEGER */
00080 /*          The leading dimension of the array A. */
00081 
00082 /*  TAU     (input) REAL array, dimension (K) */
00083 /*          The scaling factors tau for the elementary transformations as */
00084 /*          computed by the QR factorization routine. */
00085 
00086 /*  WORK    (workspace) REAL array, dimension (LWORK) */
00087 
00088 /*  LWORK   (input) INTEGER */
00089 /*          The length of the array WORK.  LWORK >= M*M + M. */
00090 
00091 /*  ===================================================================== */
00092 
00093 /*     .. Parameters .. */
00094 /*     .. */
00095 /*     .. Local Scalars .. */
00096 /*     .. */
00097 /*     .. External Functions .. */
00098 /*     .. */
00099 /*     .. External Subroutines .. */
00100 /*     .. */
00101 /*     .. Intrinsic Functions .. */
00102 /*     .. */
00103 /*     .. Local Arrays .. */
00104 /*     .. */
00105 /*     .. Executable Statements .. */
00106 
00107     /* Parameter adjustments */
00108     a_dim1 = *lda;
00109     a_offset = 1 + a_dim1;
00110     a -= a_offset;
00111     --tau;
00112     --work;
00113 
00114     /* Function Body */
00115     ret_val = 0.f;
00116 
00117 /*     Test for sufficient workspace */
00118 
00119     if (*lwork < *m * *m + *m) {
00120         xerbla_("SQRT11", &c__7);
00121         return ret_val;
00122     }
00123 
00124 /*     Quick return if possible */
00125 
00126     if (*m <= 0) {
00127         return ret_val;
00128     }
00129 
00130     slaset_("Full", m, m, &c_b5, &c_b6, &work[1], m);
00131 
00132 /*     Form Q */
00133 
00134     sorm2r_("Left", "No transpose", m, m, k, &a[a_offset], lda, &tau[1], &
00135             work[1], m, &work[*m * *m + 1], &info);
00136 
00137 /*     Form Q'*Q */
00138 
00139     sorm2r_("Left", "Transpose", m, m, k, &a[a_offset], lda, &tau[1], &work[1]
00140 , m, &work[*m * *m + 1], &info);
00141 
00142     i__1 = *m;
00143     for (j = 1; j <= i__1; ++j) {
00144         work[(j - 1) * *m + j] += -1.f;
00145 /* L10: */
00146     }
00147 
00148     ret_val = slange_("One-norm", m, m, &work[1], m, rdummy) / ((
00149             real) (*m) * slamch_("Epsilon"));
00150 
00151     return ret_val;
00152 
00153 /*     End of SQRT11 */
00154 
00155 } /* sqrt11_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13