00001 /* sptt05.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int sptt05_(integer *n, integer *nrhs, real *d__, real *e, 00021 real *b, integer *ldb, real *x, integer *ldx, real *xact, integer * 00022 ldxact, real *ferr, real *berr, real *reslts) 00023 { 00024 /* System generated locals */ 00025 integer b_dim1, b_offset, x_dim1, x_offset, xact_dim1, xact_offset, i__1, 00026 i__2; 00027 real r__1, r__2, r__3, r__4; 00028 00029 /* Local variables */ 00030 integer i__, j, k, nz; 00031 real eps, tmp, diff, axbi; 00032 integer imax; 00033 real unfl, ovfl, xnorm; 00034 extern doublereal slamch_(char *); 00035 real errbnd; 00036 extern integer isamax_(integer *, real *, integer *); 00037 00038 00039 /* -- LAPACK test routine (version 3.1) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* .. Scalar Arguments .. */ 00044 /* .. */ 00045 /* .. Array Arguments .. */ 00046 /* .. */ 00047 00048 /* Purpose */ 00049 /* ======= */ 00050 00051 /* SPTT05 tests the error bounds from iterative refinement for the */ 00052 /* computed solution to a system of equations A*X = B, where A is a */ 00053 /* symmetric tridiagonal matrix of order n. */ 00054 00055 /* RESLTS(1) = test of the error bound */ 00056 /* = norm(X - XACT) / ( norm(X) * FERR ) */ 00057 00058 /* A large value is returned if this ratio is not less than one. */ 00059 00060 /* RESLTS(2) = residual from the iterative refinement routine */ 00061 /* = the maximum of BERR / ( NZ*EPS + (*) ), where */ 00062 /* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ 00063 /* and NZ = max. number of nonzeros in any row of A, plus 1 */ 00064 00065 /* Arguments */ 00066 /* ========= */ 00067 00068 /* N (input) INTEGER */ 00069 /* The number of rows of the matrices X, B, and XACT, and the */ 00070 /* order of the matrix A. N >= 0. */ 00071 00072 /* NRHS (input) INTEGER */ 00073 /* The number of columns of the matrices X, B, and XACT. */ 00074 /* NRHS >= 0. */ 00075 00076 /* D (input) REAL array, dimension (N) */ 00077 /* The n diagonal elements of the tridiagonal matrix A. */ 00078 00079 /* E (input) REAL array, dimension (N-1) */ 00080 /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ 00081 00082 /* B (input) REAL array, dimension (LDB,NRHS) */ 00083 /* The right hand side vectors for the system of linear */ 00084 /* equations. */ 00085 00086 /* LDB (input) INTEGER */ 00087 /* The leading dimension of the array B. LDB >= max(1,N). */ 00088 00089 /* X (input) REAL array, dimension (LDX,NRHS) */ 00090 /* The computed solution vectors. Each vector is stored as a */ 00091 /* column of the matrix X. */ 00092 00093 /* LDX (input) INTEGER */ 00094 /* The leading dimension of the array X. LDX >= max(1,N). */ 00095 00096 /* XACT (input) REAL array, dimension (LDX,NRHS) */ 00097 /* The exact solution vectors. Each vector is stored as a */ 00098 /* column of the matrix XACT. */ 00099 00100 /* LDXACT (input) INTEGER */ 00101 /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ 00102 00103 /* FERR (input) REAL array, dimension (NRHS) */ 00104 /* The estimated forward error bounds for each solution vector */ 00105 /* X. If XTRUE is the true solution, FERR bounds the magnitude */ 00106 /* of the largest entry in (X - XTRUE) divided by the magnitude */ 00107 /* of the largest entry in X. */ 00108 00109 /* BERR (input) REAL array, dimension (NRHS) */ 00110 /* The componentwise relative backward error of each solution */ 00111 /* vector (i.e., the smallest relative change in any entry of A */ 00112 /* or B that makes X an exact solution). */ 00113 00114 /* RESLTS (output) REAL array, dimension (2) */ 00115 /* The maximum over the NRHS solution vectors of the ratios: */ 00116 /* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) */ 00117 /* RESLTS(2) = BERR / ( NZ*EPS + (*) ) */ 00118 00119 /* ===================================================================== */ 00120 00121 /* .. Parameters .. */ 00122 /* .. */ 00123 /* .. Local Scalars .. */ 00124 /* .. */ 00125 /* .. External Functions .. */ 00126 /* .. */ 00127 /* .. Intrinsic Functions .. */ 00128 /* .. */ 00129 /* .. Executable Statements .. */ 00130 00131 /* Quick exit if N = 0 or NRHS = 0. */ 00132 00133 /* Parameter adjustments */ 00134 --d__; 00135 --e; 00136 b_dim1 = *ldb; 00137 b_offset = 1 + b_dim1; 00138 b -= b_offset; 00139 x_dim1 = *ldx; 00140 x_offset = 1 + x_dim1; 00141 x -= x_offset; 00142 xact_dim1 = *ldxact; 00143 xact_offset = 1 + xact_dim1; 00144 xact -= xact_offset; 00145 --ferr; 00146 --berr; 00147 --reslts; 00148 00149 /* Function Body */ 00150 if (*n <= 0 || *nrhs <= 0) { 00151 reslts[1] = 0.f; 00152 reslts[2] = 0.f; 00153 return 0; 00154 } 00155 00156 eps = slamch_("Epsilon"); 00157 unfl = slamch_("Safe minimum"); 00158 ovfl = 1.f / unfl; 00159 nz = 4; 00160 00161 /* Test 1: Compute the maximum of */ 00162 /* norm(X - XACT) / ( norm(X) * FERR ) */ 00163 /* over all the vectors X and XACT using the infinity-norm. */ 00164 00165 errbnd = 0.f; 00166 i__1 = *nrhs; 00167 for (j = 1; j <= i__1; ++j) { 00168 imax = isamax_(n, &x[j * x_dim1 + 1], &c__1); 00169 /* Computing MAX */ 00170 r__2 = (r__1 = x[imax + j * x_dim1], dabs(r__1)); 00171 xnorm = dmax(r__2,unfl); 00172 diff = 0.f; 00173 i__2 = *n; 00174 for (i__ = 1; i__ <= i__2; ++i__) { 00175 /* Computing MAX */ 00176 r__2 = diff, r__3 = (r__1 = x[i__ + j * x_dim1] - xact[i__ + j * 00177 xact_dim1], dabs(r__1)); 00178 diff = dmax(r__2,r__3); 00179 /* L10: */ 00180 } 00181 00182 if (xnorm > 1.f) { 00183 goto L20; 00184 } else if (diff <= ovfl * xnorm) { 00185 goto L20; 00186 } else { 00187 errbnd = 1.f / eps; 00188 goto L30; 00189 } 00190 00191 L20: 00192 if (diff / xnorm <= ferr[j]) { 00193 /* Computing MAX */ 00194 r__1 = errbnd, r__2 = diff / xnorm / ferr[j]; 00195 errbnd = dmax(r__1,r__2); 00196 } else { 00197 errbnd = 1.f / eps; 00198 } 00199 L30: 00200 ; 00201 } 00202 reslts[1] = errbnd; 00203 00204 /* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where */ 00205 /* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) */ 00206 00207 i__1 = *nrhs; 00208 for (k = 1; k <= i__1; ++k) { 00209 if (*n == 1) { 00210 axbi = (r__1 = b[k * b_dim1 + 1], dabs(r__1)) + (r__2 = d__[1] * 00211 x[k * x_dim1 + 1], dabs(r__2)); 00212 } else { 00213 axbi = (r__1 = b[k * b_dim1 + 1], dabs(r__1)) + (r__2 = d__[1] * 00214 x[k * x_dim1 + 1], dabs(r__2)) + (r__3 = e[1] * x[k * 00215 x_dim1 + 2], dabs(r__3)); 00216 i__2 = *n - 1; 00217 for (i__ = 2; i__ <= i__2; ++i__) { 00218 tmp = (r__1 = b[i__ + k * b_dim1], dabs(r__1)) + (r__2 = e[ 00219 i__ - 1] * x[i__ - 1 + k * x_dim1], dabs(r__2)) + ( 00220 r__3 = d__[i__] * x[i__ + k * x_dim1], dabs(r__3)) + ( 00221 r__4 = e[i__] * x[i__ + 1 + k * x_dim1], dabs(r__4)); 00222 axbi = dmin(axbi,tmp); 00223 /* L40: */ 00224 } 00225 tmp = (r__1 = b[*n + k * b_dim1], dabs(r__1)) + (r__2 = e[*n - 1] 00226 * x[*n - 1 + k * x_dim1], dabs(r__2)) + (r__3 = d__[*n] * 00227 x[*n + k * x_dim1], dabs(r__3)); 00228 axbi = dmin(axbi,tmp); 00229 } 00230 /* Computing MAX */ 00231 r__1 = axbi, r__2 = nz * unfl; 00232 tmp = berr[k] / (nz * eps + nz * unfl / dmax(r__1,r__2)); 00233 if (k == 1) { 00234 reslts[2] = tmp; 00235 } else { 00236 reslts[2] = dmax(reslts[2],tmp); 00237 } 00238 /* L50: */ 00239 } 00240 00241 return 0; 00242 00243 /* End of SPTT05 */ 00244 00245 } /* sptt05_ */