00001 /* spptrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int spptrs_(char *uplo, integer *n, integer *nrhs, real *ap, 00021 real *b, integer *ldb, integer *info) 00022 { 00023 /* System generated locals */ 00024 integer b_dim1, b_offset, i__1; 00025 00026 /* Local variables */ 00027 integer i__; 00028 extern logical lsame_(char *, char *); 00029 logical upper; 00030 extern /* Subroutine */ int stpsv_(char *, char *, char *, integer *, 00031 real *, real *, integer *), xerbla_(char * 00032 , integer *); 00033 00034 00035 /* -- LAPACK routine (version 3.2) -- */ 00036 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00037 /* November 2006 */ 00038 00039 /* .. Scalar Arguments .. */ 00040 /* .. */ 00041 /* .. Array Arguments .. */ 00042 /* .. */ 00043 00044 /* Purpose */ 00045 /* ======= */ 00046 00047 /* SPPTRS solves a system of linear equations A*X = B with a symmetric */ 00048 /* positive definite matrix A in packed storage using the Cholesky */ 00049 /* factorization A = U**T*U or A = L*L**T computed by SPPTRF. */ 00050 00051 /* Arguments */ 00052 /* ========= */ 00053 00054 /* UPLO (input) CHARACTER*1 */ 00055 /* = 'U': Upper triangle of A is stored; */ 00056 /* = 'L': Lower triangle of A is stored. */ 00057 00058 /* N (input) INTEGER */ 00059 /* The order of the matrix A. N >= 0. */ 00060 00061 /* NRHS (input) INTEGER */ 00062 /* The number of right hand sides, i.e., the number of columns */ 00063 /* of the matrix B. NRHS >= 0. */ 00064 00065 /* AP (input) REAL array, dimension (N*(N+1)/2) */ 00066 /* The triangular factor U or L from the Cholesky factorization */ 00067 /* A = U**T*U or A = L*L**T, packed columnwise in a linear */ 00068 /* array. The j-th column of U or L is stored in the array AP */ 00069 /* as follows: */ 00070 /* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */ 00071 /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */ 00072 00073 /* B (input/output) REAL array, dimension (LDB,NRHS) */ 00074 /* On entry, the right hand side matrix B. */ 00075 /* On exit, the solution matrix X. */ 00076 00077 /* LDB (input) INTEGER */ 00078 /* The leading dimension of the array B. LDB >= max(1,N). */ 00079 00080 /* INFO (output) INTEGER */ 00081 /* = 0: successful exit */ 00082 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00083 00084 /* ===================================================================== */ 00085 00086 /* .. Local Scalars .. */ 00087 /* .. */ 00088 /* .. External Functions .. */ 00089 /* .. */ 00090 /* .. External Subroutines .. */ 00091 /* .. */ 00092 /* .. Intrinsic Functions .. */ 00093 /* .. */ 00094 /* .. Executable Statements .. */ 00095 00096 /* Test the input parameters. */ 00097 00098 /* Parameter adjustments */ 00099 --ap; 00100 b_dim1 = *ldb; 00101 b_offset = 1 + b_dim1; 00102 b -= b_offset; 00103 00104 /* Function Body */ 00105 *info = 0; 00106 upper = lsame_(uplo, "U"); 00107 if (! upper && ! lsame_(uplo, "L")) { 00108 *info = -1; 00109 } else if (*n < 0) { 00110 *info = -2; 00111 } else if (*nrhs < 0) { 00112 *info = -3; 00113 } else if (*ldb < max(1,*n)) { 00114 *info = -6; 00115 } 00116 if (*info != 0) { 00117 i__1 = -(*info); 00118 xerbla_("SPPTRS", &i__1); 00119 return 0; 00120 } 00121 00122 /* Quick return if possible */ 00123 00124 if (*n == 0 || *nrhs == 0) { 00125 return 0; 00126 } 00127 00128 if (upper) { 00129 00130 /* Solve A*X = B where A = U'*U. */ 00131 00132 i__1 = *nrhs; 00133 for (i__ = 1; i__ <= i__1; ++i__) { 00134 00135 /* Solve U'*X = B, overwriting B with X. */ 00136 00137 stpsv_("Upper", "Transpose", "Non-unit", n, &ap[1], &b[i__ * 00138 b_dim1 + 1], &c__1); 00139 00140 /* Solve U*X = B, overwriting B with X. */ 00141 00142 stpsv_("Upper", "No transpose", "Non-unit", n, &ap[1], &b[i__ * 00143 b_dim1 + 1], &c__1); 00144 /* L10: */ 00145 } 00146 } else { 00147 00148 /* Solve A*X = B where A = L*L'. */ 00149 00150 i__1 = *nrhs; 00151 for (i__ = 1; i__ <= i__1; ++i__) { 00152 00153 /* Solve L*Y = B, overwriting B with X. */ 00154 00155 stpsv_("Lower", "No transpose", "Non-unit", n, &ap[1], &b[i__ * 00156 b_dim1 + 1], &c__1); 00157 00158 /* Solve L'*X = Y, overwriting B with X. */ 00159 00160 stpsv_("Lower", "Transpose", "Non-unit", n, &ap[1], &b[i__ * 00161 b_dim1 + 1], &c__1); 00162 /* L20: */ 00163 } 00164 } 00165 00166 return 0; 00167 00168 /* End of SPPTRS */ 00169 00170 } /* spptrs_ */