spptri.c
Go to the documentation of this file.
00001 /* spptri.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static real c_b8 = 1.f;
00019 static integer c__1 = 1;
00020 
00021 /* Subroutine */ int spptri_(char *uplo, integer *n, real *ap, integer *info)
00022 {
00023     /* System generated locals */
00024     integer i__1, i__2;
00025 
00026     /* Local variables */
00027     integer j, jc, jj;
00028     real ajj;
00029     integer jjn;
00030     extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
00031     extern /* Subroutine */ int sspr_(char *, integer *, real *, real *, 
00032             integer *, real *);
00033     extern logical lsame_(char *, char *);
00034     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
00035     logical upper;
00036     extern /* Subroutine */ int stpmv_(char *, char *, char *, integer *, 
00037             real *, real *, integer *), xerbla_(char *
00038 , integer *), stptri_(char *, char *, integer *, real *, 
00039             integer *);
00040 
00041 
00042 /*  -- LAPACK routine (version 3.2) -- */
00043 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00044 /*     November 2006 */
00045 
00046 /*     .. Scalar Arguments .. */
00047 /*     .. */
00048 /*     .. Array Arguments .. */
00049 /*     .. */
00050 
00051 /*  Purpose */
00052 /*  ======= */
00053 
00054 /*  SPPTRI computes the inverse of a real symmetric positive definite */
00055 /*  matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */
00056 /*  computed by SPPTRF. */
00057 
00058 /*  Arguments */
00059 /*  ========= */
00060 
00061 /*  UPLO    (input) CHARACTER*1 */
00062 /*          = 'U':  Upper triangular factor is stored in AP; */
00063 /*          = 'L':  Lower triangular factor is stored in AP. */
00064 
00065 /*  N       (input) INTEGER */
00066 /*          The order of the matrix A.  N >= 0. */
00067 
00068 /*  AP      (input/output) REAL array, dimension (N*(N+1)/2) */
00069 /*          On entry, the triangular factor U or L from the Cholesky */
00070 /*          factorization A = U**T*U or A = L*L**T, packed columnwise as */
00071 /*          a linear array.  The j-th column of U or L is stored in the */
00072 /*          array AP as follows: */
00073 /*          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */
00074 /*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */
00075 
00076 /*          On exit, the upper or lower triangle of the (symmetric) */
00077 /*          inverse of A, overwriting the input factor U or L. */
00078 
00079 /*  INFO    (output) INTEGER */
00080 /*          = 0:  successful exit */
00081 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00082 /*          > 0:  if INFO = i, the (i,i) element of the factor U or L is */
00083 /*                zero, and the inverse could not be computed. */
00084 
00085 /*  ===================================================================== */
00086 
00087 /*     .. Parameters .. */
00088 /*     .. */
00089 /*     .. Local Scalars .. */
00090 /*     .. */
00091 /*     .. External Functions .. */
00092 /*     .. */
00093 /*     .. External Subroutines .. */
00094 /*     .. */
00095 /*     .. Executable Statements .. */
00096 
00097 /*     Test the input parameters. */
00098 
00099     /* Parameter adjustments */
00100     --ap;
00101 
00102     /* Function Body */
00103     *info = 0;
00104     upper = lsame_(uplo, "U");
00105     if (! upper && ! lsame_(uplo, "L")) {
00106         *info = -1;
00107     } else if (*n < 0) {
00108         *info = -2;
00109     }
00110     if (*info != 0) {
00111         i__1 = -(*info);
00112         xerbla_("SPPTRI", &i__1);
00113         return 0;
00114     }
00115 
00116 /*     Quick return if possible */
00117 
00118     if (*n == 0) {
00119         return 0;
00120     }
00121 
00122 /*     Invert the triangular Cholesky factor U or L. */
00123 
00124     stptri_(uplo, "Non-unit", n, &ap[1], info);
00125     if (*info > 0) {
00126         return 0;
00127     }
00128 
00129     if (upper) {
00130 
00131 /*        Compute the product inv(U) * inv(U)'. */
00132 
00133         jj = 0;
00134         i__1 = *n;
00135         for (j = 1; j <= i__1; ++j) {
00136             jc = jj + 1;
00137             jj += j;
00138             if (j > 1) {
00139                 i__2 = j - 1;
00140                 sspr_("Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1]);
00141             }
00142             ajj = ap[jj];
00143             sscal_(&j, &ajj, &ap[jc], &c__1);
00144 /* L10: */
00145         }
00146 
00147     } else {
00148 
00149 /*        Compute the product inv(L)' * inv(L). */
00150 
00151         jj = 1;
00152         i__1 = *n;
00153         for (j = 1; j <= i__1; ++j) {
00154             jjn = jj + *n - j + 1;
00155             i__2 = *n - j + 1;
00156             ap[jj] = sdot_(&i__2, &ap[jj], &c__1, &ap[jj], &c__1);
00157             if (j < *n) {
00158                 i__2 = *n - j;
00159                 stpmv_("Lower", "Transpose", "Non-unit", &i__2, &ap[jjn], &ap[
00160                         jj + 1], &c__1);
00161             }
00162             jj = jjn;
00163 /* L20: */
00164         }
00165     }
00166 
00167     return 0;
00168 
00169 /*     End of SPPTRI */
00170 
00171 } /* spptri_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13