spptrf.c
Go to the documentation of this file.
00001 /* spptrf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static real c_b16 = -1.f;
00020 
00021 /* Subroutine */ int spptrf_(char *uplo, integer *n, real *ap, integer *info)
00022 {
00023     /* System generated locals */
00024     integer i__1, i__2;
00025     real r__1;
00026 
00027     /* Builtin functions */
00028     double sqrt(doublereal);
00029 
00030     /* Local variables */
00031     integer j, jc, jj;
00032     real ajj;
00033     extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
00034     extern /* Subroutine */ int sspr_(char *, integer *, real *, real *, 
00035             integer *, real *);
00036     extern logical lsame_(char *, char *);
00037     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
00038     logical upper;
00039     extern /* Subroutine */ int stpsv_(char *, char *, char *, integer *, 
00040             real *, real *, integer *), xerbla_(char *
00041 , integer *);
00042 
00043 
00044 /*  -- LAPACK routine (version 3.2) -- */
00045 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00046 /*     November 2006 */
00047 
00048 /*     .. Scalar Arguments .. */
00049 /*     .. */
00050 /*     .. Array Arguments .. */
00051 /*     .. */
00052 
00053 /*  Purpose */
00054 /*  ======= */
00055 
00056 /*  SPPTRF computes the Cholesky factorization of a real symmetric */
00057 /*  positive definite matrix A stored in packed format. */
00058 
00059 /*  The factorization has the form */
00060 /*     A = U**T * U,  if UPLO = 'U', or */
00061 /*     A = L  * L**T,  if UPLO = 'L', */
00062 /*  where U is an upper triangular matrix and L is lower triangular. */
00063 
00064 /*  Arguments */
00065 /*  ========= */
00066 
00067 /*  UPLO    (input) CHARACTER*1 */
00068 /*          = 'U':  Upper triangle of A is stored; */
00069 /*          = 'L':  Lower triangle of A is stored. */
00070 
00071 /*  N       (input) INTEGER */
00072 /*          The order of the matrix A.  N >= 0. */
00073 
00074 /*  AP      (input/output) REAL array, dimension (N*(N+1)/2) */
00075 /*          On entry, the upper or lower triangle of the symmetric matrix */
00076 /*          A, packed columnwise in a linear array.  The j-th column of A */
00077 /*          is stored in the array AP as follows: */
00078 /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
00079 /*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
00080 /*          See below for further details. */
00081 
00082 /*          On exit, if INFO = 0, the triangular factor U or L from the */
00083 /*          Cholesky factorization A = U**T*U or A = L*L**T, in the same */
00084 /*          storage format as A. */
00085 
00086 /*  INFO    (output) INTEGER */
00087 /*          = 0:  successful exit */
00088 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00089 /*          > 0:  if INFO = i, the leading minor of order i is not */
00090 /*                positive definite, and the factorization could not be */
00091 /*                completed. */
00092 
00093 /*  Further Details */
00094 /*  ======= ======= */
00095 
00096 /*  The packed storage scheme is illustrated by the following example */
00097 /*  when N = 4, UPLO = 'U': */
00098 
00099 /*  Two-dimensional storage of the symmetric matrix A: */
00100 
00101 /*     a11 a12 a13 a14 */
00102 /*         a22 a23 a24 */
00103 /*             a33 a34     (aij = aji) */
00104 /*                 a44 */
00105 
00106 /*  Packed storage of the upper triangle of A: */
00107 
00108 /*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
00109 
00110 /*  ===================================================================== */
00111 
00112 /*     .. Parameters .. */
00113 /*     .. */
00114 /*     .. Local Scalars .. */
00115 /*     .. */
00116 /*     .. External Functions .. */
00117 /*     .. */
00118 /*     .. External Subroutines .. */
00119 /*     .. */
00120 /*     .. Intrinsic Functions .. */
00121 /*     .. */
00122 /*     .. Executable Statements .. */
00123 
00124 /*     Test the input parameters. */
00125 
00126     /* Parameter adjustments */
00127     --ap;
00128 
00129     /* Function Body */
00130     *info = 0;
00131     upper = lsame_(uplo, "U");
00132     if (! upper && ! lsame_(uplo, "L")) {
00133         *info = -1;
00134     } else if (*n < 0) {
00135         *info = -2;
00136     }
00137     if (*info != 0) {
00138         i__1 = -(*info);
00139         xerbla_("SPPTRF", &i__1);
00140         return 0;
00141     }
00142 
00143 /*     Quick return if possible */
00144 
00145     if (*n == 0) {
00146         return 0;
00147     }
00148 
00149     if (upper) {
00150 
00151 /*        Compute the Cholesky factorization A = U'*U. */
00152 
00153         jj = 0;
00154         i__1 = *n;
00155         for (j = 1; j <= i__1; ++j) {
00156             jc = jj + 1;
00157             jj += j;
00158 
00159 /*           Compute elements 1:J-1 of column J. */
00160 
00161             if (j > 1) {
00162                 i__2 = j - 1;
00163                 stpsv_("Upper", "Transpose", "Non-unit", &i__2, &ap[1], &ap[
00164                         jc], &c__1);
00165             }
00166 
00167 /*           Compute U(J,J) and test for non-positive-definiteness. */
00168 
00169             i__2 = j - 1;
00170             ajj = ap[jj] - sdot_(&i__2, &ap[jc], &c__1, &ap[jc], &c__1);
00171             if (ajj <= 0.f) {
00172                 ap[jj] = ajj;
00173                 goto L30;
00174             }
00175             ap[jj] = sqrt(ajj);
00176 /* L10: */
00177         }
00178     } else {
00179 
00180 /*        Compute the Cholesky factorization A = L*L'. */
00181 
00182         jj = 1;
00183         i__1 = *n;
00184         for (j = 1; j <= i__1; ++j) {
00185 
00186 /*           Compute L(J,J) and test for non-positive-definiteness. */
00187 
00188             ajj = ap[jj];
00189             if (ajj <= 0.f) {
00190                 ap[jj] = ajj;
00191                 goto L30;
00192             }
00193             ajj = sqrt(ajj);
00194             ap[jj] = ajj;
00195 
00196 /*           Compute elements J+1:N of column J and update the trailing */
00197 /*           submatrix. */
00198 
00199             if (j < *n) {
00200                 i__2 = *n - j;
00201                 r__1 = 1.f / ajj;
00202                 sscal_(&i__2, &r__1, &ap[jj + 1], &c__1);
00203                 i__2 = *n - j;
00204                 sspr_("Lower", &i__2, &c_b16, &ap[jj + 1], &c__1, &ap[jj + *n 
00205                         - j + 1]);
00206                 jj = jj + *n - j + 1;
00207             }
00208 /* L20: */
00209         }
00210     }
00211     goto L40;
00212 
00213 L30:
00214     *info = j;
00215 
00216 L40:
00217     return 0;
00218 
00219 /*     End of SPPTRF */
00220 
00221 } /* spptrf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13