sppt01.c
Go to the documentation of this file.
00001 /* sppt01.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static real c_b14 = 1.f;
00020 
00021 /* Subroutine */ int sppt01_(char *uplo, integer *n, real *a, real *afac, 
00022         real *rwork, real *resid)
00023 {
00024     /* System generated locals */
00025     integer i__1;
00026 
00027     /* Local variables */
00028     integer i__, k;
00029     real t;
00030     integer kc;
00031     real eps;
00032     integer npp;
00033     extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
00034     extern /* Subroutine */ int sspr_(char *, integer *, real *, real *, 
00035             integer *, real *);
00036     extern logical lsame_(char *, char *);
00037     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
00038     real anorm;
00039     extern /* Subroutine */ int stpmv_(char *, char *, char *, integer *, 
00040             real *, real *, integer *);
00041     extern doublereal slamch_(char *), slansp_(char *, char *, 
00042             integer *, real *, real *);
00043 
00044 
00045 /*  -- LAPACK test routine (version 3.1) -- */
00046 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00047 /*     November 2006 */
00048 
00049 /*     .. Scalar Arguments .. */
00050 /*     .. */
00051 /*     .. Array Arguments .. */
00052 /*     .. */
00053 
00054 /*  Purpose */
00055 /*  ======= */
00056 
00057 /*  SPPT01 reconstructs a symmetric positive definite packed matrix A */
00058 /*  from its L*L' or U'*U factorization and computes the residual */
00059 /*     norm( L*L' - A ) / ( N * norm(A) * EPS ) or */
00060 /*     norm( U'*U - A ) / ( N * norm(A) * EPS ), */
00061 /*  where EPS is the machine epsilon. */
00062 
00063 /*  Arguments */
00064 /*  ========== */
00065 
00066 /*  UPLO    (input) CHARACTER*1 */
00067 /*          Specifies whether the upper or lower triangular part of the */
00068 /*          symmetric matrix A is stored: */
00069 /*          = 'U':  Upper triangular */
00070 /*          = 'L':  Lower triangular */
00071 
00072 /*  N       (input) INTEGER */
00073 /*          The number of rows and columns of the matrix A.  N >= 0. */
00074 
00075 /*  A       (input) REAL array, dimension (N*(N+1)/2) */
00076 /*          The original symmetric matrix A, stored as a packed */
00077 /*          triangular matrix. */
00078 
00079 /*  AFAC    (input/output) REAL array, dimension (N*(N+1)/2) */
00080 /*          On entry, the factor L or U from the L*L' or U'*U */
00081 /*          factorization of A, stored as a packed triangular matrix. */
00082 /*          Overwritten with the reconstructed matrix, and then with the */
00083 /*          difference L*L' - A (or U'*U - A). */
00084 
00085 /*  RWORK   (workspace) REAL array, dimension (N) */
00086 
00087 /*  RESID   (output) REAL */
00088 /*          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) */
00089 /*          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) */
00090 
00091 /*  ===================================================================== */
00092 
00093 /*     .. Parameters .. */
00094 /*     .. */
00095 /*     .. Local Scalars .. */
00096 /*     .. */
00097 /*     .. External Functions .. */
00098 /*     .. */
00099 /*     .. External Subroutines .. */
00100 /*     .. */
00101 /*     .. Intrinsic Functions .. */
00102 /*     .. */
00103 /*     .. Executable Statements .. */
00104 
00105 /*     Quick exit if N = 0 */
00106 
00107     /* Parameter adjustments */
00108     --rwork;
00109     --afac;
00110     --a;
00111 
00112     /* Function Body */
00113     if (*n <= 0) {
00114         *resid = 0.f;
00115         return 0;
00116     }
00117 
00118 /*     Exit with RESID = 1/EPS if ANORM = 0. */
00119 
00120     eps = slamch_("Epsilon");
00121     anorm = slansp_("1", uplo, n, &a[1], &rwork[1]);
00122     if (anorm <= 0.f) {
00123         *resid = 1.f / eps;
00124         return 0;
00125     }
00126 
00127 /*     Compute the product U'*U, overwriting U. */
00128 
00129     if (lsame_(uplo, "U")) {
00130         kc = *n * (*n - 1) / 2 + 1;
00131         for (k = *n; k >= 1; --k) {
00132 
00133 /*           Compute the (K,K) element of the result. */
00134 
00135             t = sdot_(&k, &afac[kc], &c__1, &afac[kc], &c__1);
00136             afac[kc + k - 1] = t;
00137 
00138 /*           Compute the rest of column K. */
00139 
00140             if (k > 1) {
00141                 i__1 = k - 1;
00142                 stpmv_("Upper", "Transpose", "Non-unit", &i__1, &afac[1], &
00143                         afac[kc], &c__1);
00144                 kc -= k - 1;
00145             }
00146 /* L10: */
00147         }
00148 
00149 /*     Compute the product L*L', overwriting L. */
00150 
00151     } else {
00152         kc = *n * (*n + 1) / 2;
00153         for (k = *n; k >= 1; --k) {
00154 
00155 /*           Add a multiple of column K of the factor L to each of */
00156 /*           columns K+1 through N. */
00157 
00158             if (k < *n) {
00159                 i__1 = *n - k;
00160                 sspr_("Lower", &i__1, &c_b14, &afac[kc + 1], &c__1, &afac[kc 
00161                         + *n - k + 1]);
00162             }
00163 
00164 /*           Scale column K by the diagonal element. */
00165 
00166             t = afac[kc];
00167             i__1 = *n - k + 1;
00168             sscal_(&i__1, &t, &afac[kc], &c__1);
00169 
00170             kc -= *n - k + 2;
00171 /* L20: */
00172         }
00173     }
00174 
00175 /*     Compute the difference  L*L' - A (or U'*U - A). */
00176 
00177     npp = *n * (*n + 1) / 2;
00178     i__1 = npp;
00179     for (i__ = 1; i__ <= i__1; ++i__) {
00180         afac[i__] -= a[i__];
00181 /* L30: */
00182     }
00183 
00184 /*     Compute norm( L*U - A ) / ( N * norm(A) * EPS ) */
00185 
00186     *resid = slansp_("1", uplo, n, &afac[1], &rwork[1]);
00187 
00188     *resid = *resid / (real) (*n) / anorm / eps;
00189 
00190     return 0;
00191 
00192 /*     End of SPPT01 */
00193 
00194 } /* sppt01_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:13