00001 /* sorml2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int sorml2_(char *side, char *trans, integer *m, integer *n, 00017 integer *k, real *a, integer *lda, real *tau, real *c__, integer *ldc, 00018 real *work, integer *info) 00019 { 00020 /* System generated locals */ 00021 integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2; 00022 00023 /* Local variables */ 00024 integer i__, i1, i2, i3, ic, jc, mi, ni, nq; 00025 real aii; 00026 logical left; 00027 extern logical lsame_(char *, char *); 00028 extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, 00029 integer *, real *, real *, integer *, real *), xerbla_( 00030 char *, integer *); 00031 logical notran; 00032 00033 00034 /* -- LAPACK routine (version 3.2) -- */ 00035 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00036 /* November 2006 */ 00037 00038 /* .. Scalar Arguments .. */ 00039 /* .. */ 00040 /* .. Array Arguments .. */ 00041 /* .. */ 00042 00043 /* Purpose */ 00044 /* ======= */ 00045 00046 /* SORML2 overwrites the general real m by n matrix C with */ 00047 00048 /* Q * C if SIDE = 'L' and TRANS = 'N', or */ 00049 00050 /* Q'* C if SIDE = 'L' and TRANS = 'T', or */ 00051 00052 /* C * Q if SIDE = 'R' and TRANS = 'N', or */ 00053 00054 /* C * Q' if SIDE = 'R' and TRANS = 'T', */ 00055 00056 /* where Q is a real orthogonal matrix defined as the product of k */ 00057 /* elementary reflectors */ 00058 00059 /* Q = H(k) . . . H(2) H(1) */ 00060 00061 /* as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n */ 00062 /* if SIDE = 'R'. */ 00063 00064 /* Arguments */ 00065 /* ========= */ 00066 00067 /* SIDE (input) CHARACTER*1 */ 00068 /* = 'L': apply Q or Q' from the Left */ 00069 /* = 'R': apply Q or Q' from the Right */ 00070 00071 /* TRANS (input) CHARACTER*1 */ 00072 /* = 'N': apply Q (No transpose) */ 00073 /* = 'T': apply Q' (Transpose) */ 00074 00075 /* M (input) INTEGER */ 00076 /* The number of rows of the matrix C. M >= 0. */ 00077 00078 /* N (input) INTEGER */ 00079 /* The number of columns of the matrix C. N >= 0. */ 00080 00081 /* K (input) INTEGER */ 00082 /* The number of elementary reflectors whose product defines */ 00083 /* the matrix Q. */ 00084 /* If SIDE = 'L', M >= K >= 0; */ 00085 /* if SIDE = 'R', N >= K >= 0. */ 00086 00087 /* A (input) REAL array, dimension */ 00088 /* (LDA,M) if SIDE = 'L', */ 00089 /* (LDA,N) if SIDE = 'R' */ 00090 /* The i-th row must contain the vector which defines the */ 00091 /* elementary reflector H(i), for i = 1,2,...,k, as returned by */ 00092 /* SGELQF in the first k rows of its array argument A. */ 00093 /* A is modified by the routine but restored on exit. */ 00094 00095 /* LDA (input) INTEGER */ 00096 /* The leading dimension of the array A. LDA >= max(1,K). */ 00097 00098 /* TAU (input) REAL array, dimension (K) */ 00099 /* TAU(i) must contain the scalar factor of the elementary */ 00100 /* reflector H(i), as returned by SGELQF. */ 00101 00102 /* C (input/output) REAL array, dimension (LDC,N) */ 00103 /* On entry, the m by n matrix C. */ 00104 /* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */ 00105 00106 /* LDC (input) INTEGER */ 00107 /* The leading dimension of the array C. LDC >= max(1,M). */ 00108 00109 /* WORK (workspace) REAL array, dimension */ 00110 /* (N) if SIDE = 'L', */ 00111 /* (M) if SIDE = 'R' */ 00112 00113 /* INFO (output) INTEGER */ 00114 /* = 0: successful exit */ 00115 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00116 00117 /* ===================================================================== */ 00118 00119 /* .. Parameters .. */ 00120 /* .. */ 00121 /* .. Local Scalars .. */ 00122 /* .. */ 00123 /* .. External Functions .. */ 00124 /* .. */ 00125 /* .. External Subroutines .. */ 00126 /* .. */ 00127 /* .. Intrinsic Functions .. */ 00128 /* .. */ 00129 /* .. Executable Statements .. */ 00130 00131 /* Test the input arguments */ 00132 00133 /* Parameter adjustments */ 00134 a_dim1 = *lda; 00135 a_offset = 1 + a_dim1; 00136 a -= a_offset; 00137 --tau; 00138 c_dim1 = *ldc; 00139 c_offset = 1 + c_dim1; 00140 c__ -= c_offset; 00141 --work; 00142 00143 /* Function Body */ 00144 *info = 0; 00145 left = lsame_(side, "L"); 00146 notran = lsame_(trans, "N"); 00147 00148 /* NQ is the order of Q */ 00149 00150 if (left) { 00151 nq = *m; 00152 } else { 00153 nq = *n; 00154 } 00155 if (! left && ! lsame_(side, "R")) { 00156 *info = -1; 00157 } else if (! notran && ! lsame_(trans, "T")) { 00158 *info = -2; 00159 } else if (*m < 0) { 00160 *info = -3; 00161 } else if (*n < 0) { 00162 *info = -4; 00163 } else if (*k < 0 || *k > nq) { 00164 *info = -5; 00165 } else if (*lda < max(1,*k)) { 00166 *info = -7; 00167 } else if (*ldc < max(1,*m)) { 00168 *info = -10; 00169 } 00170 if (*info != 0) { 00171 i__1 = -(*info); 00172 xerbla_("SORML2", &i__1); 00173 return 0; 00174 } 00175 00176 /* Quick return if possible */ 00177 00178 if (*m == 0 || *n == 0 || *k == 0) { 00179 return 0; 00180 } 00181 00182 if (left && notran || ! left && ! notran) { 00183 i1 = 1; 00184 i2 = *k; 00185 i3 = 1; 00186 } else { 00187 i1 = *k; 00188 i2 = 1; 00189 i3 = -1; 00190 } 00191 00192 if (left) { 00193 ni = *n; 00194 jc = 1; 00195 } else { 00196 mi = *m; 00197 ic = 1; 00198 } 00199 00200 i__1 = i2; 00201 i__2 = i3; 00202 for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { 00203 if (left) { 00204 00205 /* H(i) is applied to C(i:m,1:n) */ 00206 00207 mi = *m - i__ + 1; 00208 ic = i__; 00209 } else { 00210 00211 /* H(i) is applied to C(1:m,i:n) */ 00212 00213 ni = *n - i__ + 1; 00214 jc = i__; 00215 } 00216 00217 /* Apply H(i) */ 00218 00219 aii = a[i__ + i__ * a_dim1]; 00220 a[i__ + i__ * a_dim1] = 1.f; 00221 slarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &tau[i__], &c__[ 00222 ic + jc * c_dim1], ldc, &work[1]); 00223 a[i__ + i__ * a_dim1] = aii; 00224 /* L10: */ 00225 } 00226 return 0; 00227 00228 /* End of SORML2 */ 00229 00230 } /* sorml2_ */