sorm2l.c
Go to the documentation of this file.
00001 /* sorm2l.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int sorm2l_(char *side, char *trans, integer *m, integer *n, 
00021         integer *k, real *a, integer *lda, real *tau, real *c__, integer *ldc, 
00022          real *work, integer *info)
00023 {
00024     /* System generated locals */
00025     integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
00026 
00027     /* Local variables */
00028     integer i__, i1, i2, i3, mi, ni, nq;
00029     real aii;
00030     logical left;
00031     extern logical lsame_(char *, char *);
00032     extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, 
00033             integer *, real *, real *, integer *, real *), xerbla_(
00034             char *, integer *);
00035     logical notran;
00036 
00037 
00038 /*  -- LAPACK routine (version 3.2) -- */
00039 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00040 /*     November 2006 */
00041 
00042 /*     .. Scalar Arguments .. */
00043 /*     .. */
00044 /*     .. Array Arguments .. */
00045 /*     .. */
00046 
00047 /*  Purpose */
00048 /*  ======= */
00049 
00050 /*  SORM2L overwrites the general real m by n matrix C with */
00051 
00052 /*        Q * C  if SIDE = 'L' and TRANS = 'N', or */
00053 
00054 /*        Q'* C  if SIDE = 'L' and TRANS = 'T', or */
00055 
00056 /*        C * Q  if SIDE = 'R' and TRANS = 'N', or */
00057 
00058 /*        C * Q' if SIDE = 'R' and TRANS = 'T', */
00059 
00060 /*  where Q is a real orthogonal matrix defined as the product of k */
00061 /*  elementary reflectors */
00062 
00063 /*        Q = H(k) . . . H(2) H(1) */
00064 
00065 /*  as returned by SGEQLF. Q is of order m if SIDE = 'L' and of order n */
00066 /*  if SIDE = 'R'. */
00067 
00068 /*  Arguments */
00069 /*  ========= */
00070 
00071 /*  SIDE    (input) CHARACTER*1 */
00072 /*          = 'L': apply Q or Q' from the Left */
00073 /*          = 'R': apply Q or Q' from the Right */
00074 
00075 /*  TRANS   (input) CHARACTER*1 */
00076 /*          = 'N': apply Q  (No transpose) */
00077 /*          = 'T': apply Q' (Transpose) */
00078 
00079 /*  M       (input) INTEGER */
00080 /*          The number of rows of the matrix C. M >= 0. */
00081 
00082 /*  N       (input) INTEGER */
00083 /*          The number of columns of the matrix C. N >= 0. */
00084 
00085 /*  K       (input) INTEGER */
00086 /*          The number of elementary reflectors whose product defines */
00087 /*          the matrix Q. */
00088 /*          If SIDE = 'L', M >= K >= 0; */
00089 /*          if SIDE = 'R', N >= K >= 0. */
00090 
00091 /*  A       (input) REAL array, dimension (LDA,K) */
00092 /*          The i-th column must contain the vector which defines the */
00093 /*          elementary reflector H(i), for i = 1,2,...,k, as returned by */
00094 /*          SGEQLF in the last k columns of its array argument A. */
00095 /*          A is modified by the routine but restored on exit. */
00096 
00097 /*  LDA     (input) INTEGER */
00098 /*          The leading dimension of the array A. */
00099 /*          If SIDE = 'L', LDA >= max(1,M); */
00100 /*          if SIDE = 'R', LDA >= max(1,N). */
00101 
00102 /*  TAU     (input) REAL array, dimension (K) */
00103 /*          TAU(i) must contain the scalar factor of the elementary */
00104 /*          reflector H(i), as returned by SGEQLF. */
00105 
00106 /*  C       (input/output) REAL array, dimension (LDC,N) */
00107 /*          On entry, the m by n matrix C. */
00108 /*          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */
00109 
00110 /*  LDC     (input) INTEGER */
00111 /*          The leading dimension of the array C. LDC >= max(1,M). */
00112 
00113 /*  WORK    (workspace) REAL array, dimension */
00114 /*                                   (N) if SIDE = 'L', */
00115 /*                                   (M) if SIDE = 'R' */
00116 
00117 /*  INFO    (output) INTEGER */
00118 /*          = 0: successful exit */
00119 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00120 
00121 /*  ===================================================================== */
00122 
00123 /*     .. Parameters .. */
00124 /*     .. */
00125 /*     .. Local Scalars .. */
00126 /*     .. */
00127 /*     .. External Functions .. */
00128 /*     .. */
00129 /*     .. External Subroutines .. */
00130 /*     .. */
00131 /*     .. Intrinsic Functions .. */
00132 /*     .. */
00133 /*     .. Executable Statements .. */
00134 
00135 /*     Test the input arguments */
00136 
00137     /* Parameter adjustments */
00138     a_dim1 = *lda;
00139     a_offset = 1 + a_dim1;
00140     a -= a_offset;
00141     --tau;
00142     c_dim1 = *ldc;
00143     c_offset = 1 + c_dim1;
00144     c__ -= c_offset;
00145     --work;
00146 
00147     /* Function Body */
00148     *info = 0;
00149     left = lsame_(side, "L");
00150     notran = lsame_(trans, "N");
00151 
00152 /*     NQ is the order of Q */
00153 
00154     if (left) {
00155         nq = *m;
00156     } else {
00157         nq = *n;
00158     }
00159     if (! left && ! lsame_(side, "R")) {
00160         *info = -1;
00161     } else if (! notran && ! lsame_(trans, "T")) {
00162         *info = -2;
00163     } else if (*m < 0) {
00164         *info = -3;
00165     } else if (*n < 0) {
00166         *info = -4;
00167     } else if (*k < 0 || *k > nq) {
00168         *info = -5;
00169     } else if (*lda < max(1,nq)) {
00170         *info = -7;
00171     } else if (*ldc < max(1,*m)) {
00172         *info = -10;
00173     }
00174     if (*info != 0) {
00175         i__1 = -(*info);
00176         xerbla_("SORM2L", &i__1);
00177         return 0;
00178     }
00179 
00180 /*     Quick return if possible */
00181 
00182     if (*m == 0 || *n == 0 || *k == 0) {
00183         return 0;
00184     }
00185 
00186     if (left && notran || ! left && ! notran) {
00187         i1 = 1;
00188         i2 = *k;
00189         i3 = 1;
00190     } else {
00191         i1 = *k;
00192         i2 = 1;
00193         i3 = -1;
00194     }
00195 
00196     if (left) {
00197         ni = *n;
00198     } else {
00199         mi = *m;
00200     }
00201 
00202     i__1 = i2;
00203     i__2 = i3;
00204     for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
00205         if (left) {
00206 
00207 /*           H(i) is applied to C(1:m-k+i,1:n) */
00208 
00209             mi = *m - *k + i__;
00210         } else {
00211 
00212 /*           H(i) is applied to C(1:m,1:n-k+i) */
00213 
00214             ni = *n - *k + i__;
00215         }
00216 
00217 /*        Apply H(i) */
00218 
00219         aii = a[nq - *k + i__ + i__ * a_dim1];
00220         a[nq - *k + i__ + i__ * a_dim1] = 1.f;
00221         slarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &tau[i__], &c__[
00222                 c_offset], ldc, &work[1]);
00223         a[nq - *k + i__ + i__ * a_dim1] = aii;
00224 /* L10: */
00225     }
00226     return 0;
00227 
00228 /*     End of SORM2L */
00229 
00230 } /* sorm2l_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:12