00001 /* sorgl2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int sorgl2_(integer *m, integer *n, integer *k, real *a, 00017 integer *lda, real *tau, real *work, integer *info) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1, i__2; 00021 real r__1; 00022 00023 /* Local variables */ 00024 integer i__, j, l; 00025 extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), 00026 slarf_(char *, integer *, integer *, real *, integer *, real *, 00027 real *, integer *, real *), xerbla_(char *, integer *); 00028 00029 00030 /* -- LAPACK routine (version 3.2) -- */ 00031 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00032 /* November 2006 */ 00033 00034 /* .. Scalar Arguments .. */ 00035 /* .. */ 00036 /* .. Array Arguments .. */ 00037 /* .. */ 00038 00039 /* Purpose */ 00040 /* ======= */ 00041 00042 /* SORGL2 generates an m by n real matrix Q with orthonormal rows, */ 00043 /* which is defined as the first m rows of a product of k elementary */ 00044 /* reflectors of order n */ 00045 00046 /* Q = H(k) . . . H(2) H(1) */ 00047 00048 /* as returned by SGELQF. */ 00049 00050 /* Arguments */ 00051 /* ========= */ 00052 00053 /* M (input) INTEGER */ 00054 /* The number of rows of the matrix Q. M >= 0. */ 00055 00056 /* N (input) INTEGER */ 00057 /* The number of columns of the matrix Q. N >= M. */ 00058 00059 /* K (input) INTEGER */ 00060 /* The number of elementary reflectors whose product defines the */ 00061 /* matrix Q. M >= K >= 0. */ 00062 00063 /* A (input/output) REAL array, dimension (LDA,N) */ 00064 /* On entry, the i-th row must contain the vector which defines */ 00065 /* the elementary reflector H(i), for i = 1,2,...,k, as returned */ 00066 /* by SGELQF in the first k rows of its array argument A. */ 00067 /* On exit, the m-by-n matrix Q. */ 00068 00069 /* LDA (input) INTEGER */ 00070 /* The first dimension of the array A. LDA >= max(1,M). */ 00071 00072 /* TAU (input) REAL array, dimension (K) */ 00073 /* TAU(i) must contain the scalar factor of the elementary */ 00074 /* reflector H(i), as returned by SGELQF. */ 00075 00076 /* WORK (workspace) REAL array, dimension (M) */ 00077 00078 /* INFO (output) INTEGER */ 00079 /* = 0: successful exit */ 00080 /* < 0: if INFO = -i, the i-th argument has an illegal value */ 00081 00082 /* ===================================================================== */ 00083 00084 /* .. Parameters .. */ 00085 /* .. */ 00086 /* .. Local Scalars .. */ 00087 /* .. */ 00088 /* .. External Subroutines .. */ 00089 /* .. */ 00090 /* .. Intrinsic Functions .. */ 00091 /* .. */ 00092 /* .. Executable Statements .. */ 00093 00094 /* Test the input arguments */ 00095 00096 /* Parameter adjustments */ 00097 a_dim1 = *lda; 00098 a_offset = 1 + a_dim1; 00099 a -= a_offset; 00100 --tau; 00101 --work; 00102 00103 /* Function Body */ 00104 *info = 0; 00105 if (*m < 0) { 00106 *info = -1; 00107 } else if (*n < *m) { 00108 *info = -2; 00109 } else if (*k < 0 || *k > *m) { 00110 *info = -3; 00111 } else if (*lda < max(1,*m)) { 00112 *info = -5; 00113 } 00114 if (*info != 0) { 00115 i__1 = -(*info); 00116 xerbla_("SORGL2", &i__1); 00117 return 0; 00118 } 00119 00120 /* Quick return if possible */ 00121 00122 if (*m <= 0) { 00123 return 0; 00124 } 00125 00126 if (*k < *m) { 00127 00128 /* Initialise rows k+1:m to rows of the unit matrix */ 00129 00130 i__1 = *n; 00131 for (j = 1; j <= i__1; ++j) { 00132 i__2 = *m; 00133 for (l = *k + 1; l <= i__2; ++l) { 00134 a[l + j * a_dim1] = 0.f; 00135 /* L10: */ 00136 } 00137 if (j > *k && j <= *m) { 00138 a[j + j * a_dim1] = 1.f; 00139 } 00140 /* L20: */ 00141 } 00142 } 00143 00144 for (i__ = *k; i__ >= 1; --i__) { 00145 00146 /* Apply H(i) to A(i:m,i:n) from the right */ 00147 00148 if (i__ < *n) { 00149 if (i__ < *m) { 00150 a[i__ + i__ * a_dim1] = 1.f; 00151 i__1 = *m - i__; 00152 i__2 = *n - i__ + 1; 00153 slarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, & 00154 tau[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); 00155 } 00156 i__1 = *n - i__; 00157 r__1 = -tau[i__]; 00158 sscal_(&i__1, &r__1, &a[i__ + (i__ + 1) * a_dim1], lda); 00159 } 00160 a[i__ + i__ * a_dim1] = 1.f - tau[i__]; 00161 00162 /* Set A(i,1:i-1) to zero */ 00163 00164 i__1 = i__ - 1; 00165 for (l = 1; l <= i__1; ++l) { 00166 a[i__ + l * a_dim1] = 0.f; 00167 /* L30: */ 00168 } 00169 /* L40: */ 00170 } 00171 return 0; 00172 00173 /* End of SORGL2 */ 00174 00175 } /* sorgl2_ */