00001 /* sorgbr.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static integer c_n1 = -1; 00020 00021 /* Subroutine */ int sorgbr_(char *vect, integer *m, integer *n, integer *k, 00022 real *a, integer *lda, real *tau, real *work, integer *lwork, integer 00023 *info) 00024 { 00025 /* System generated locals */ 00026 integer a_dim1, a_offset, i__1, i__2, i__3; 00027 00028 /* Local variables */ 00029 integer i__, j, nb, mn; 00030 extern logical lsame_(char *, char *); 00031 integer iinfo; 00032 logical wantq; 00033 extern /* Subroutine */ int xerbla_(char *, integer *); 00034 extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 00035 integer *, integer *); 00036 extern /* Subroutine */ int sorglq_(integer *, integer *, integer *, real 00037 *, integer *, real *, real *, integer *, integer *), sorgqr_( 00038 integer *, integer *, integer *, real *, integer *, real *, real * 00039 , integer *, integer *); 00040 integer lwkopt; 00041 logical lquery; 00042 00043 00044 /* -- LAPACK routine (version 3.2) -- */ 00045 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00046 /* November 2006 */ 00047 00048 /* .. Scalar Arguments .. */ 00049 /* .. */ 00050 /* .. Array Arguments .. */ 00051 /* .. */ 00052 00053 /* Purpose */ 00054 /* ======= */ 00055 00056 /* SORGBR generates one of the real orthogonal matrices Q or P**T */ 00057 /* determined by SGEBRD when reducing a real matrix A to bidiagonal */ 00058 /* form: A = Q * B * P**T. Q and P**T are defined as products of */ 00059 /* elementary reflectors H(i) or G(i) respectively. */ 00060 00061 /* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */ 00062 /* is of order M: */ 00063 /* if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n */ 00064 /* columns of Q, where m >= n >= k; */ 00065 /* if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an */ 00066 /* M-by-M matrix. */ 00067 00068 /* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T */ 00069 /* is of order N: */ 00070 /* if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m */ 00071 /* rows of P**T, where n >= m >= k; */ 00072 /* if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as */ 00073 /* an N-by-N matrix. */ 00074 00075 /* Arguments */ 00076 /* ========= */ 00077 00078 /* VECT (input) CHARACTER*1 */ 00079 /* Specifies whether the matrix Q or the matrix P**T is */ 00080 /* required, as defined in the transformation applied by SGEBRD: */ 00081 /* = 'Q': generate Q; */ 00082 /* = 'P': generate P**T. */ 00083 00084 /* M (input) INTEGER */ 00085 /* The number of rows of the matrix Q or P**T to be returned. */ 00086 /* M >= 0. */ 00087 00088 /* N (input) INTEGER */ 00089 /* The number of columns of the matrix Q or P**T to be returned. */ 00090 /* N >= 0. */ 00091 /* If VECT = 'Q', M >= N >= min(M,K); */ 00092 /* if VECT = 'P', N >= M >= min(N,K). */ 00093 00094 /* K (input) INTEGER */ 00095 /* If VECT = 'Q', the number of columns in the original M-by-K */ 00096 /* matrix reduced by SGEBRD. */ 00097 /* If VECT = 'P', the number of rows in the original K-by-N */ 00098 /* matrix reduced by SGEBRD. */ 00099 /* K >= 0. */ 00100 00101 /* A (input/output) REAL array, dimension (LDA,N) */ 00102 /* On entry, the vectors which define the elementary reflectors, */ 00103 /* as returned by SGEBRD. */ 00104 /* On exit, the M-by-N matrix Q or P**T. */ 00105 00106 /* LDA (input) INTEGER */ 00107 /* The leading dimension of the array A. LDA >= max(1,M). */ 00108 00109 /* TAU (input) REAL array, dimension */ 00110 /* (min(M,K)) if VECT = 'Q' */ 00111 /* (min(N,K)) if VECT = 'P' */ 00112 /* TAU(i) must contain the scalar factor of the elementary */ 00113 /* reflector H(i) or G(i), which determines Q or P**T, as */ 00114 /* returned by SGEBRD in its array argument TAUQ or TAUP. */ 00115 00116 /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ 00117 /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ 00118 00119 /* LWORK (input) INTEGER */ 00120 /* The dimension of the array WORK. LWORK >= max(1,min(M,N)). */ 00121 /* For optimum performance LWORK >= min(M,N)*NB, where NB */ 00122 /* is the optimal blocksize. */ 00123 00124 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00125 /* only calculates the optimal size of the WORK array, returns */ 00126 /* this value as the first entry of the WORK array, and no error */ 00127 /* message related to LWORK is issued by XERBLA. */ 00128 00129 /* INFO (output) INTEGER */ 00130 /* = 0: successful exit */ 00131 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00132 00133 /* ===================================================================== */ 00134 00135 /* .. Parameters .. */ 00136 /* .. */ 00137 /* .. Local Scalars .. */ 00138 /* .. */ 00139 /* .. External Functions .. */ 00140 /* .. */ 00141 /* .. External Subroutines .. */ 00142 /* .. */ 00143 /* .. Intrinsic Functions .. */ 00144 /* .. */ 00145 /* .. Executable Statements .. */ 00146 00147 /* Test the input arguments */ 00148 00149 /* Parameter adjustments */ 00150 a_dim1 = *lda; 00151 a_offset = 1 + a_dim1; 00152 a -= a_offset; 00153 --tau; 00154 --work; 00155 00156 /* Function Body */ 00157 *info = 0; 00158 wantq = lsame_(vect, "Q"); 00159 mn = min(*m,*n); 00160 lquery = *lwork == -1; 00161 if (! wantq && ! lsame_(vect, "P")) { 00162 *info = -1; 00163 } else if (*m < 0) { 00164 *info = -2; 00165 } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && ( 00166 *m > *n || *m < min(*n,*k))) { 00167 *info = -3; 00168 } else if (*k < 0) { 00169 *info = -4; 00170 } else if (*lda < max(1,*m)) { 00171 *info = -6; 00172 } else if (*lwork < max(1,mn) && ! lquery) { 00173 *info = -9; 00174 } 00175 00176 if (*info == 0) { 00177 if (wantq) { 00178 nb = ilaenv_(&c__1, "SORGQR", " ", m, n, k, &c_n1); 00179 } else { 00180 nb = ilaenv_(&c__1, "SORGLQ", " ", m, n, k, &c_n1); 00181 } 00182 lwkopt = max(1,mn) * nb; 00183 work[1] = (real) lwkopt; 00184 } 00185 00186 if (*info != 0) { 00187 i__1 = -(*info); 00188 xerbla_("SORGBR", &i__1); 00189 return 0; 00190 } else if (lquery) { 00191 return 0; 00192 } 00193 00194 /* Quick return if possible */ 00195 00196 if (*m == 0 || *n == 0) { 00197 work[1] = 1.f; 00198 return 0; 00199 } 00200 00201 if (wantq) { 00202 00203 /* Form Q, determined by a call to SGEBRD to reduce an m-by-k */ 00204 /* matrix */ 00205 00206 if (*m >= *k) { 00207 00208 /* If m >= k, assume m >= n >= k */ 00209 00210 sorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & 00211 iinfo); 00212 00213 } else { 00214 00215 /* If m < k, assume m = n */ 00216 00217 /* Shift the vectors which define the elementary reflectors one */ 00218 /* column to the right, and set the first row and column of Q */ 00219 /* to those of the unit matrix */ 00220 00221 for (j = *m; j >= 2; --j) { 00222 a[j * a_dim1 + 1] = 0.f; 00223 i__1 = *m; 00224 for (i__ = j + 1; i__ <= i__1; ++i__) { 00225 a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; 00226 /* L10: */ 00227 } 00228 /* L20: */ 00229 } 00230 a[a_dim1 + 1] = 1.f; 00231 i__1 = *m; 00232 for (i__ = 2; i__ <= i__1; ++i__) { 00233 a[i__ + a_dim1] = 0.f; 00234 /* L30: */ 00235 } 00236 if (*m > 1) { 00237 00238 /* Form Q(2:m,2:m) */ 00239 00240 i__1 = *m - 1; 00241 i__2 = *m - 1; 00242 i__3 = *m - 1; 00243 sorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 00244 1], &work[1], lwork, &iinfo); 00245 } 00246 } 00247 } else { 00248 00249 /* Form P', determined by a call to SGEBRD to reduce a k-by-n */ 00250 /* matrix */ 00251 00252 if (*k < *n) { 00253 00254 /* If k < n, assume k <= m <= n */ 00255 00256 sorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & 00257 iinfo); 00258 00259 } else { 00260 00261 /* If k >= n, assume m = n */ 00262 00263 /* Shift the vectors which define the elementary reflectors one */ 00264 /* row downward, and set the first row and column of P' to */ 00265 /* those of the unit matrix */ 00266 00267 a[a_dim1 + 1] = 1.f; 00268 i__1 = *n; 00269 for (i__ = 2; i__ <= i__1; ++i__) { 00270 a[i__ + a_dim1] = 0.f; 00271 /* L40: */ 00272 } 00273 i__1 = *n; 00274 for (j = 2; j <= i__1; ++j) { 00275 for (i__ = j - 1; i__ >= 2; --i__) { 00276 a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1]; 00277 /* L50: */ 00278 } 00279 a[j * a_dim1 + 1] = 0.f; 00280 /* L60: */ 00281 } 00282 if (*n > 1) { 00283 00284 /* Form P'(2:n,2:n) */ 00285 00286 i__1 = *n - 1; 00287 i__2 = *n - 1; 00288 i__3 = *n - 1; 00289 sorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ 00290 1], &work[1], lwork, &iinfo); 00291 } 00292 } 00293 } 00294 work[1] = (real) lwkopt; 00295 return 0; 00296 00297 /* End of SORGBR */ 00298 00299 } /* sorgbr_ */