00001 /* slatrz.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int slatrz_(integer *m, integer *n, integer *l, real *a, 00017 integer *lda, real *tau, real *work) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, i__1, i__2; 00021 00022 /* Local variables */ 00023 integer i__; 00024 extern /* Subroutine */ int slarz_(char *, integer *, integer *, integer * 00025 , real *, integer *, real *, real *, integer *, real *), 00026 slarfp_(integer *, real *, real *, integer *, real *); 00027 00028 00029 /* -- LAPACK routine (version 3.2) -- */ 00030 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00031 /* November 2006 */ 00032 00033 /* .. Scalar Arguments .. */ 00034 /* .. */ 00035 /* .. Array Arguments .. */ 00036 /* .. */ 00037 00038 /* Purpose */ 00039 /* ======= */ 00040 00041 /* SLATRZ factors the M-by-(M+L) real upper trapezoidal matrix */ 00042 /* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means */ 00043 /* of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal */ 00044 /* matrix and, R and A1 are M-by-M upper triangular matrices. */ 00045 00046 /* Arguments */ 00047 /* ========= */ 00048 00049 /* M (input) INTEGER */ 00050 /* The number of rows of the matrix A. M >= 0. */ 00051 00052 /* N (input) INTEGER */ 00053 /* The number of columns of the matrix A. N >= 0. */ 00054 00055 /* L (input) INTEGER */ 00056 /* The number of columns of the matrix A containing the */ 00057 /* meaningful part of the Householder vectors. N-M >= L >= 0. */ 00058 00059 /* A (input/output) REAL array, dimension (LDA,N) */ 00060 /* On entry, the leading M-by-N upper trapezoidal part of the */ 00061 /* array A must contain the matrix to be factorized. */ 00062 /* On exit, the leading M-by-M upper triangular part of A */ 00063 /* contains the upper triangular matrix R, and elements N-L+1 to */ 00064 /* N of the first M rows of A, with the array TAU, represent the */ 00065 /* orthogonal matrix Z as a product of M elementary reflectors. */ 00066 00067 /* LDA (input) INTEGER */ 00068 /* The leading dimension of the array A. LDA >= max(1,M). */ 00069 00070 /* TAU (output) REAL array, dimension (M) */ 00071 /* The scalar factors of the elementary reflectors. */ 00072 00073 /* WORK (workspace) REAL array, dimension (M) */ 00074 00075 /* Further Details */ 00076 /* =============== */ 00077 00078 /* Based on contributions by */ 00079 /* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ 00080 00081 /* The factorization is obtained by Householder's method. The kth */ 00082 /* transformation matrix, Z( k ), which is used to introduce zeros into */ 00083 /* the ( m - k + 1 )th row of A, is given in the form */ 00084 00085 /* Z( k ) = ( I 0 ), */ 00086 /* ( 0 T( k ) ) */ 00087 00088 /* where */ 00089 00090 /* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ 00091 /* ( 0 ) */ 00092 /* ( z( k ) ) */ 00093 00094 /* tau is a scalar and z( k ) is an l element vector. tau and z( k ) */ 00095 /* are chosen to annihilate the elements of the kth row of A2. */ 00096 00097 /* The scalar tau is returned in the kth element of TAU and the vector */ 00098 /* u( k ) in the kth row of A2, such that the elements of z( k ) are */ 00099 /* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */ 00100 /* the upper triangular part of A1. */ 00101 00102 /* Z is given by */ 00103 00104 /* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ 00105 00106 /* ===================================================================== */ 00107 00108 /* .. Parameters .. */ 00109 /* .. */ 00110 /* .. Local Scalars .. */ 00111 /* .. */ 00112 /* .. External Subroutines .. */ 00113 /* .. */ 00114 /* .. Executable Statements .. */ 00115 00116 /* Test the input arguments */ 00117 00118 /* Quick return if possible */ 00119 00120 /* Parameter adjustments */ 00121 a_dim1 = *lda; 00122 a_offset = 1 + a_dim1; 00123 a -= a_offset; 00124 --tau; 00125 --work; 00126 00127 /* Function Body */ 00128 if (*m == 0) { 00129 return 0; 00130 } else if (*m == *n) { 00131 i__1 = *n; 00132 for (i__ = 1; i__ <= i__1; ++i__) { 00133 tau[i__] = 0.f; 00134 /* L10: */ 00135 } 00136 return 0; 00137 } 00138 00139 for (i__ = *m; i__ >= 1; --i__) { 00140 00141 /* Generate elementary reflector H(i) to annihilate */ 00142 /* [ A(i,i) A(i,n-l+1:n) ] */ 00143 00144 i__1 = *l + 1; 00145 slarfp_(&i__1, &a[i__ + i__ * a_dim1], &a[i__ + (*n - *l + 1) * 00146 a_dim1], lda, &tau[i__]); 00147 00148 /* Apply H(i) to A(1:i-1,i:n) from the right */ 00149 00150 i__1 = i__ - 1; 00151 i__2 = *n - i__ + 1; 00152 slarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1], 00153 lda, &tau[i__], &a[i__ * a_dim1 + 1], lda, &work[1]); 00154 00155 /* L20: */ 00156 } 00157 00158 return 0; 00159 00160 /* End of SLATRZ */ 00161 00162 } /* slatrz_ */