00001 /* slasq1.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static integer c__2 = 2; 00020 static integer c__0 = 0; 00021 00022 /* Subroutine */ int slasq1_(integer *n, real *d__, real *e, real *work, 00023 integer *info) 00024 { 00025 /* System generated locals */ 00026 integer i__1, i__2; 00027 real r__1, r__2, r__3; 00028 00029 /* Builtin functions */ 00030 double sqrt(doublereal); 00031 00032 /* Local variables */ 00033 integer i__; 00034 real eps; 00035 extern /* Subroutine */ int slas2_(real *, real *, real *, real *, real *) 00036 ; 00037 real scale; 00038 integer iinfo; 00039 real sigmn, sigmx; 00040 extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 00041 integer *), slasq2_(integer *, real *, integer *); 00042 extern doublereal slamch_(char *); 00043 real safmin; 00044 extern /* Subroutine */ int xerbla_(char *, integer *), slascl_( 00045 char *, integer *, integer *, real *, real *, integer *, integer * 00046 , real *, integer *, integer *), slasrt_(char *, integer * 00047 , real *, integer *); 00048 00049 00050 /* -- LAPACK routine (version 3.2) -- */ 00051 00052 /* -- Contributed by Osni Marques of the Lawrence Berkeley National -- */ 00053 /* -- Laboratory and Beresford Parlett of the Univ. of California at -- */ 00054 /* -- Berkeley -- */ 00055 /* -- November 2008 -- */ 00056 00057 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00058 /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ 00059 00060 /* .. Scalar Arguments .. */ 00061 /* .. */ 00062 /* .. Array Arguments .. */ 00063 /* .. */ 00064 00065 /* Purpose */ 00066 /* ======= */ 00067 00068 /* SLASQ1 computes the singular values of a real N-by-N bidiagonal */ 00069 /* matrix with diagonal D and off-diagonal E. The singular values */ 00070 /* are computed to high relative accuracy, in the absence of */ 00071 /* denormalization, underflow and overflow. The algorithm was first */ 00072 /* presented in */ 00073 00074 /* "Accurate singular values and differential qd algorithms" by K. V. */ 00075 /* Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, */ 00076 /* 1994, */ 00077 00078 /* and the present implementation is described in "An implementation of */ 00079 /* the dqds Algorithm (Positive Case)", LAPACK Working Note. */ 00080 00081 /* Arguments */ 00082 /* ========= */ 00083 00084 /* N (input) INTEGER */ 00085 /* The number of rows and columns in the matrix. N >= 0. */ 00086 00087 /* D (input/output) REAL array, dimension (N) */ 00088 /* On entry, D contains the diagonal elements of the */ 00089 /* bidiagonal matrix whose SVD is desired. On normal exit, */ 00090 /* D contains the singular values in decreasing order. */ 00091 00092 /* E (input/output) REAL array, dimension (N) */ 00093 /* On entry, elements E(1:N-1) contain the off-diagonal elements */ 00094 /* of the bidiagonal matrix whose SVD is desired. */ 00095 /* On exit, E is overwritten. */ 00096 00097 /* WORK (workspace) REAL array, dimension (4*N) */ 00098 00099 /* INFO (output) INTEGER */ 00100 /* = 0: successful exit */ 00101 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00102 /* > 0: the algorithm failed */ 00103 /* = 1, a split was marked by a positive value in E */ 00104 /* = 2, current block of Z not diagonalized after 30*N */ 00105 /* iterations (in inner while loop) */ 00106 /* = 3, termination criterion of outer while loop not met */ 00107 /* (program created more than N unreduced blocks) */ 00108 00109 /* ===================================================================== */ 00110 00111 /* .. Parameters .. */ 00112 /* .. */ 00113 /* .. Local Scalars .. */ 00114 /* .. */ 00115 /* .. External Subroutines .. */ 00116 /* .. */ 00117 /* .. External Functions .. */ 00118 /* .. */ 00119 /* .. Intrinsic Functions .. */ 00120 /* .. */ 00121 /* .. Executable Statements .. */ 00122 00123 /* Parameter adjustments */ 00124 --work; 00125 --e; 00126 --d__; 00127 00128 /* Function Body */ 00129 *info = 0; 00130 if (*n < 0) { 00131 *info = -2; 00132 i__1 = -(*info); 00133 xerbla_("SLASQ1", &i__1); 00134 return 0; 00135 } else if (*n == 0) { 00136 return 0; 00137 } else if (*n == 1) { 00138 d__[1] = dabs(d__[1]); 00139 return 0; 00140 } else if (*n == 2) { 00141 slas2_(&d__[1], &e[1], &d__[2], &sigmn, &sigmx); 00142 d__[1] = sigmx; 00143 d__[2] = sigmn; 00144 return 0; 00145 } 00146 00147 /* Estimate the largest singular value. */ 00148 00149 sigmx = 0.f; 00150 i__1 = *n - 1; 00151 for (i__ = 1; i__ <= i__1; ++i__) { 00152 d__[i__] = (r__1 = d__[i__], dabs(r__1)); 00153 /* Computing MAX */ 00154 r__2 = sigmx, r__3 = (r__1 = e[i__], dabs(r__1)); 00155 sigmx = dmax(r__2,r__3); 00156 /* L10: */ 00157 } 00158 d__[*n] = (r__1 = d__[*n], dabs(r__1)); 00159 00160 /* Early return if SIGMX is zero (matrix is already diagonal). */ 00161 00162 if (sigmx == 0.f) { 00163 slasrt_("D", n, &d__[1], &iinfo); 00164 return 0; 00165 } 00166 00167 i__1 = *n; 00168 for (i__ = 1; i__ <= i__1; ++i__) { 00169 /* Computing MAX */ 00170 r__1 = sigmx, r__2 = d__[i__]; 00171 sigmx = dmax(r__1,r__2); 00172 /* L20: */ 00173 } 00174 00175 /* Copy D and E into WORK (in the Z format) and scale (squaring the */ 00176 /* input data makes scaling by a power of the radix pointless). */ 00177 00178 eps = slamch_("Precision"); 00179 safmin = slamch_("Safe minimum"); 00180 scale = sqrt(eps / safmin); 00181 scopy_(n, &d__[1], &c__1, &work[1], &c__2); 00182 i__1 = *n - 1; 00183 scopy_(&i__1, &e[1], &c__1, &work[2], &c__2); 00184 i__1 = (*n << 1) - 1; 00185 i__2 = (*n << 1) - 1; 00186 slascl_("G", &c__0, &c__0, &sigmx, &scale, &i__1, &c__1, &work[1], &i__2, 00187 &iinfo); 00188 00189 /* Compute the q's and e's. */ 00190 00191 i__1 = (*n << 1) - 1; 00192 for (i__ = 1; i__ <= i__1; ++i__) { 00193 /* Computing 2nd power */ 00194 r__1 = work[i__]; 00195 work[i__] = r__1 * r__1; 00196 /* L30: */ 00197 } 00198 work[*n * 2] = 0.f; 00199 00200 slasq2_(n, &work[1], info); 00201 00202 if (*info == 0) { 00203 i__1 = *n; 00204 for (i__ = 1; i__ <= i__1; ++i__) { 00205 d__[i__] = sqrt(work[i__]); 00206 /* L40: */ 00207 } 00208 slascl_("G", &c__0, &c__0, &scale, &sigmx, n, &c__1, &d__[1], n, & 00209 iinfo); 00210 } 00211 00212 return 0; 00213 00214 /* End of SLASQ1 */ 00215 00216 } /* slasq1_ */