slasdq.c
Go to the documentation of this file.
00001 /* slasdq.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int slasdq_(char *uplo, integer *sqre, integer *n, integer *
00021         ncvt, integer *nru, integer *ncc, real *d__, real *e, real *vt, 
00022         integer *ldvt, real *u, integer *ldu, real *c__, integer *ldc, real *
00023         work, integer *info)
00024 {
00025     /* System generated locals */
00026     integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
00027             i__2;
00028 
00029     /* Local variables */
00030     integer i__, j;
00031     real r__, cs, sn;
00032     integer np1, isub;
00033     real smin;
00034     integer sqre1;
00035     extern logical lsame_(char *, char *);
00036     extern /* Subroutine */ int slasr_(char *, char *, char *, integer *, 
00037             integer *, real *, real *, real *, integer *);
00038     integer iuplo;
00039     extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
00040             integer *), xerbla_(char *, integer *), slartg_(real *, 
00041             real *, real *, real *, real *);
00042     logical rotate;
00043     extern /* Subroutine */ int sbdsqr_(char *, integer *, integer *, integer 
00044             *, integer *, real *, real *, real *, integer *, real *, integer *
00045 , real *, integer *, real *, integer *);
00046 
00047 
00048 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00049 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00050 /*     November 2006 */
00051 
00052 /*     .. Scalar Arguments .. */
00053 /*     .. */
00054 /*     .. Array Arguments .. */
00055 /*     .. */
00056 
00057 /*  Purpose */
00058 /*  ======= */
00059 
00060 /*  SLASDQ computes the singular value decomposition (SVD) of a real */
00061 /*  (upper or lower) bidiagonal matrix with diagonal D and offdiagonal */
00062 /*  E, accumulating the transformations if desired. Letting B denote */
00063 /*  the input bidiagonal matrix, the algorithm computes orthogonal */
00064 /*  matrices Q and P such that B = Q * S * P' (P' denotes the transpose */
00065 /*  of P). The singular values S are overwritten on D. */
00066 
00067 /*  The input matrix U  is changed to U  * Q  if desired. */
00068 /*  The input matrix VT is changed to P' * VT if desired. */
00069 /*  The input matrix C  is changed to Q' * C  if desired. */
00070 
00071 /*  See "Computing  Small Singular Values of Bidiagonal Matrices With */
00072 /*  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
00073 /*  LAPACK Working Note #3, for a detailed description of the algorithm. */
00074 
00075 /*  Arguments */
00076 /*  ========= */
00077 
00078 /*  UPLO  (input) CHARACTER*1 */
00079 /*        On entry, UPLO specifies whether the input bidiagonal matrix */
00080 /*        is upper or lower bidiagonal, and wether it is square are */
00081 /*        not. */
00082 /*           UPLO = 'U' or 'u'   B is upper bidiagonal. */
00083 /*           UPLO = 'L' or 'l'   B is lower bidiagonal. */
00084 
00085 /*  SQRE  (input) INTEGER */
00086 /*        = 0: then the input matrix is N-by-N. */
00087 /*        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and */
00088 /*             (N+1)-by-N if UPLU = 'L'. */
00089 
00090 /*        The bidiagonal matrix has */
00091 /*        N = NL + NR + 1 rows and */
00092 /*        M = N + SQRE >= N columns. */
00093 
00094 /*  N     (input) INTEGER */
00095 /*        On entry, N specifies the number of rows and columns */
00096 /*        in the matrix. N must be at least 0. */
00097 
00098 /*  NCVT  (input) INTEGER */
00099 /*        On entry, NCVT specifies the number of columns of */
00100 /*        the matrix VT. NCVT must be at least 0. */
00101 
00102 /*  NRU   (input) INTEGER */
00103 /*        On entry, NRU specifies the number of rows of */
00104 /*        the matrix U. NRU must be at least 0. */
00105 
00106 /*  NCC   (input) INTEGER */
00107 /*        On entry, NCC specifies the number of columns of */
00108 /*        the matrix C. NCC must be at least 0. */
00109 
00110 /*  D     (input/output) REAL array, dimension (N) */
00111 /*        On entry, D contains the diagonal entries of the */
00112 /*        bidiagonal matrix whose SVD is desired. On normal exit, */
00113 /*        D contains the singular values in ascending order. */
00114 
00115 /*  E     (input/output) REAL array. */
00116 /*        dimension is (N-1) if SQRE = 0 and N if SQRE = 1. */
00117 /*        On entry, the entries of E contain the offdiagonal entries */
00118 /*        of the bidiagonal matrix whose SVD is desired. On normal */
00119 /*        exit, E will contain 0. If the algorithm does not converge, */
00120 /*        D and E will contain the diagonal and superdiagonal entries */
00121 /*        of a bidiagonal matrix orthogonally equivalent to the one */
00122 /*        given as input. */
00123 
00124 /*  VT    (input/output) REAL array, dimension (LDVT, NCVT) */
00125 /*        On entry, contains a matrix which on exit has been */
00126 /*        premultiplied by P', dimension N-by-NCVT if SQRE = 0 */
00127 /*        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). */
00128 
00129 /*  LDVT  (input) INTEGER */
00130 /*        On entry, LDVT specifies the leading dimension of VT as */
00131 /*        declared in the calling (sub) program. LDVT must be at */
00132 /*        least 1. If NCVT is nonzero LDVT must also be at least N. */
00133 
00134 /*  U     (input/output) REAL array, dimension (LDU, N) */
00135 /*        On entry, contains a  matrix which on exit has been */
00136 /*        postmultiplied by Q, dimension NRU-by-N if SQRE = 0 */
00137 /*        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). */
00138 
00139 /*  LDU   (input) INTEGER */
00140 /*        On entry, LDU  specifies the leading dimension of U as */
00141 /*        declared in the calling (sub) program. LDU must be at */
00142 /*        least max( 1, NRU ) . */
00143 
00144 /*  C     (input/output) REAL array, dimension (LDC, NCC) */
00145 /*        On entry, contains an N-by-NCC matrix which on exit */
00146 /*        has been premultiplied by Q'  dimension N-by-NCC if SQRE = 0 */
00147 /*        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). */
00148 
00149 /*  LDC   (input) INTEGER */
00150 /*        On entry, LDC  specifies the leading dimension of C as */
00151 /*        declared in the calling (sub) program. LDC must be at */
00152 /*        least 1. If NCC is nonzero, LDC must also be at least N. */
00153 
00154 /*  WORK  (workspace) REAL array, dimension (4*N) */
00155 /*        Workspace. Only referenced if one of NCVT, NRU, or NCC is */
00156 /*        nonzero, and if N is at least 2. */
00157 
00158 /*  INFO  (output) INTEGER */
00159 /*        On exit, a value of 0 indicates a successful exit. */
00160 /*        If INFO < 0, argument number -INFO is illegal. */
00161 /*        If INFO > 0, the algorithm did not converge, and INFO */
00162 /*        specifies how many superdiagonals did not converge. */
00163 
00164 /*  Further Details */
00165 /*  =============== */
00166 
00167 /*  Based on contributions by */
00168 /*     Ming Gu and Huan Ren, Computer Science Division, University of */
00169 /*     California at Berkeley, USA */
00170 
00171 /*  ===================================================================== */
00172 
00173 /*     .. Parameters .. */
00174 /*     .. */
00175 /*     .. Local Scalars .. */
00176 /*     .. */
00177 /*     .. External Subroutines .. */
00178 /*     .. */
00179 /*     .. External Functions .. */
00180 /*     .. */
00181 /*     .. Intrinsic Functions .. */
00182 /*     .. */
00183 /*     .. Executable Statements .. */
00184 
00185 /*     Test the input parameters. */
00186 
00187     /* Parameter adjustments */
00188     --d__;
00189     --e;
00190     vt_dim1 = *ldvt;
00191     vt_offset = 1 + vt_dim1;
00192     vt -= vt_offset;
00193     u_dim1 = *ldu;
00194     u_offset = 1 + u_dim1;
00195     u -= u_offset;
00196     c_dim1 = *ldc;
00197     c_offset = 1 + c_dim1;
00198     c__ -= c_offset;
00199     --work;
00200 
00201     /* Function Body */
00202     *info = 0;
00203     iuplo = 0;
00204     if (lsame_(uplo, "U")) {
00205         iuplo = 1;
00206     }
00207     if (lsame_(uplo, "L")) {
00208         iuplo = 2;
00209     }
00210     if (iuplo == 0) {
00211         *info = -1;
00212     } else if (*sqre < 0 || *sqre > 1) {
00213         *info = -2;
00214     } else if (*n < 0) {
00215         *info = -3;
00216     } else if (*ncvt < 0) {
00217         *info = -4;
00218     } else if (*nru < 0) {
00219         *info = -5;
00220     } else if (*ncc < 0) {
00221         *info = -6;
00222     } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
00223         *info = -10;
00224     } else if (*ldu < max(1,*nru)) {
00225         *info = -12;
00226     } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
00227         *info = -14;
00228     }
00229     if (*info != 0) {
00230         i__1 = -(*info);
00231         xerbla_("SLASDQ", &i__1);
00232         return 0;
00233     }
00234     if (*n == 0) {
00235         return 0;
00236     }
00237 
00238 /*     ROTATE is true if any singular vectors desired, false otherwise */
00239 
00240     rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
00241     np1 = *n + 1;
00242     sqre1 = *sqre;
00243 
00244 /*     If matrix non-square upper bidiagonal, rotate to be lower */
00245 /*     bidiagonal.  The rotations are on the right. */
00246 
00247     if (iuplo == 1 && sqre1 == 1) {
00248         i__1 = *n - 1;
00249         for (i__ = 1; i__ <= i__1; ++i__) {
00250             slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
00251             d__[i__] = r__;
00252             e[i__] = sn * d__[i__ + 1];
00253             d__[i__ + 1] = cs * d__[i__ + 1];
00254             if (rotate) {
00255                 work[i__] = cs;
00256                 work[*n + i__] = sn;
00257             }
00258 /* L10: */
00259         }
00260         slartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
00261         d__[*n] = r__;
00262         e[*n] = 0.f;
00263         if (rotate) {
00264             work[*n] = cs;
00265             work[*n + *n] = sn;
00266         }
00267         iuplo = 2;
00268         sqre1 = 0;
00269 
00270 /*        Update singular vectors if desired. */
00271 
00272         if (*ncvt > 0) {
00273             slasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
00274                     vt_offset], ldvt);
00275         }
00276     }
00277 
00278 /*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
00279 /*     by applying Givens rotations on the left. */
00280 
00281     if (iuplo == 2) {
00282         i__1 = *n - 1;
00283         for (i__ = 1; i__ <= i__1; ++i__) {
00284             slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
00285             d__[i__] = r__;
00286             e[i__] = sn * d__[i__ + 1];
00287             d__[i__ + 1] = cs * d__[i__ + 1];
00288             if (rotate) {
00289                 work[i__] = cs;
00290                 work[*n + i__] = sn;
00291             }
00292 /* L20: */
00293         }
00294 
00295 /*        If matrix (N+1)-by-N lower bidiagonal, one additional */
00296 /*        rotation is needed. */
00297 
00298         if (sqre1 == 1) {
00299             slartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
00300             d__[*n] = r__;
00301             if (rotate) {
00302                 work[*n] = cs;
00303                 work[*n + *n] = sn;
00304             }
00305         }
00306 
00307 /*        Update singular vectors if desired. */
00308 
00309         if (*nru > 0) {
00310             if (sqre1 == 0) {
00311                 slasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
00312                         u_offset], ldu);
00313             } else {
00314                 slasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
00315                         u_offset], ldu);
00316             }
00317         }
00318         if (*ncc > 0) {
00319             if (sqre1 == 0) {
00320                 slasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
00321                         c_offset], ldc);
00322             } else {
00323                 slasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
00324                         c_offset], ldc);
00325             }
00326         }
00327     }
00328 
00329 /*     Call SBDSQR to compute the SVD of the reduced real */
00330 /*     N-by-N upper bidiagonal matrix. */
00331 
00332     sbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
00333             u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
00334 
00335 /*     Sort the singular values into ascending order (insertion sort on */
00336 /*     singular values, but only one transposition per singular vector) */
00337 
00338     i__1 = *n;
00339     for (i__ = 1; i__ <= i__1; ++i__) {
00340 
00341 /*        Scan for smallest D(I). */
00342 
00343         isub = i__;
00344         smin = d__[i__];
00345         i__2 = *n;
00346         for (j = i__ + 1; j <= i__2; ++j) {
00347             if (d__[j] < smin) {
00348                 isub = j;
00349                 smin = d__[j];
00350             }
00351 /* L30: */
00352         }
00353         if (isub != i__) {
00354 
00355 /*           Swap singular values and vectors. */
00356 
00357             d__[isub] = d__[i__];
00358             d__[i__] = smin;
00359             if (*ncvt > 0) {
00360                 sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1], 
00361                         ldvt);
00362             }
00363             if (*nru > 0) {
00364                 sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1]
00365 , &c__1);
00366             }
00367             if (*ncc > 0) {
00368                 sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)
00369                         ;
00370             }
00371         }
00372 /* L40: */
00373     }
00374 
00375     return 0;
00376 
00377 /*     End of SLASDQ */
00378 
00379 } /* slasdq_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:11