00001 /* slaqsp.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int slaqsp_(char *uplo, integer *n, real *ap, real *s, real * 00017 scond, real *amax, char *equed) 00018 { 00019 /* System generated locals */ 00020 integer i__1, i__2; 00021 00022 /* Local variables */ 00023 integer i__, j, jc; 00024 real cj, large; 00025 extern logical lsame_(char *, char *); 00026 real small; 00027 extern doublereal slamch_(char *); 00028 00029 00030 /* -- LAPACK auxiliary routine (version 3.2) -- */ 00031 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00032 /* November 2006 */ 00033 00034 /* .. Scalar Arguments .. */ 00035 /* .. */ 00036 /* .. Array Arguments .. */ 00037 /* .. */ 00038 00039 /* Purpose */ 00040 /* ======= */ 00041 00042 /* SLAQSP equilibrates a symmetric matrix A using the scaling factors */ 00043 /* in the vector S. */ 00044 00045 /* Arguments */ 00046 /* ========= */ 00047 00048 /* UPLO (input) CHARACTER*1 */ 00049 /* Specifies whether the upper or lower triangular part of the */ 00050 /* symmetric matrix A is stored. */ 00051 /* = 'U': Upper triangular */ 00052 /* = 'L': Lower triangular */ 00053 00054 /* N (input) INTEGER */ 00055 /* The order of the matrix A. N >= 0. */ 00056 00057 /* AP (input/output) REAL array, dimension (N*(N+1)/2) */ 00058 /* On entry, the upper or lower triangle of the symmetric matrix */ 00059 /* A, packed columnwise in a linear array. The j-th column of A */ 00060 /* is stored in the array AP as follows: */ 00061 /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ 00062 /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ 00063 00064 /* On exit, the equilibrated matrix: diag(S) * A * diag(S), in */ 00065 /* the same storage format as A. */ 00066 00067 /* S (input) REAL array, dimension (N) */ 00068 /* The scale factors for A. */ 00069 00070 /* SCOND (input) REAL */ 00071 /* Ratio of the smallest S(i) to the largest S(i). */ 00072 00073 /* AMAX (input) REAL */ 00074 /* Absolute value of largest matrix entry. */ 00075 00076 /* EQUED (output) CHARACTER*1 */ 00077 /* Specifies whether or not equilibration was done. */ 00078 /* = 'N': No equilibration. */ 00079 /* = 'Y': Equilibration was done, i.e., A has been replaced by */ 00080 /* diag(S) * A * diag(S). */ 00081 00082 /* Internal Parameters */ 00083 /* =================== */ 00084 00085 /* THRESH is a threshold value used to decide if scaling should be done */ 00086 /* based on the ratio of the scaling factors. If SCOND < THRESH, */ 00087 /* scaling is done. */ 00088 00089 /* LARGE and SMALL are threshold values used to decide if scaling should */ 00090 /* be done based on the absolute size of the largest matrix element. */ 00091 /* If AMAX > LARGE or AMAX < SMALL, scaling is done. */ 00092 00093 /* ===================================================================== */ 00094 00095 /* .. Parameters .. */ 00096 /* .. */ 00097 /* .. Local Scalars .. */ 00098 /* .. */ 00099 /* .. External Functions .. */ 00100 /* .. */ 00101 /* .. Executable Statements .. */ 00102 00103 /* Quick return if possible */ 00104 00105 /* Parameter adjustments */ 00106 --s; 00107 --ap; 00108 00109 /* Function Body */ 00110 if (*n <= 0) { 00111 *(unsigned char *)equed = 'N'; 00112 return 0; 00113 } 00114 00115 /* Initialize LARGE and SMALL. */ 00116 00117 small = slamch_("Safe minimum") / slamch_("Precision"); 00118 large = 1.f / small; 00119 00120 if (*scond >= .1f && *amax >= small && *amax <= large) { 00121 00122 /* No equilibration */ 00123 00124 *(unsigned char *)equed = 'N'; 00125 } else { 00126 00127 /* Replace A by diag(S) * A * diag(S). */ 00128 00129 if (lsame_(uplo, "U")) { 00130 00131 /* Upper triangle of A is stored. */ 00132 00133 jc = 1; 00134 i__1 = *n; 00135 for (j = 1; j <= i__1; ++j) { 00136 cj = s[j]; 00137 i__2 = j; 00138 for (i__ = 1; i__ <= i__2; ++i__) { 00139 ap[jc + i__ - 1] = cj * s[i__] * ap[jc + i__ - 1]; 00140 /* L10: */ 00141 } 00142 jc += j; 00143 /* L20: */ 00144 } 00145 } else { 00146 00147 /* Lower triangle of A is stored. */ 00148 00149 jc = 1; 00150 i__1 = *n; 00151 for (j = 1; j <= i__1; ++j) { 00152 cj = s[j]; 00153 i__2 = *n; 00154 for (i__ = j; i__ <= i__2; ++i__) { 00155 ap[jc + i__ - j] = cj * s[i__] * ap[jc + i__ - j]; 00156 /* L30: */ 00157 } 00158 jc = jc + *n - j + 1; 00159 /* L40: */ 00160 } 00161 } 00162 *(unsigned char *)equed = 'Y'; 00163 } 00164 00165 return 0; 00166 00167 /* End of SLAQSP */ 00168 00169 } /* slaqsp_ */