slaqsb.c
Go to the documentation of this file.
00001 /* slaqsb.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int slaqsb_(char *uplo, integer *n, integer *kd, real *ab, 
00017         integer *ldab, real *s, real *scond, real *amax, char *equed)
00018 {
00019     /* System generated locals */
00020     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
00021 
00022     /* Local variables */
00023     integer i__, j;
00024     real cj, large;
00025     extern logical lsame_(char *, char *);
00026     real small;
00027     extern doublereal slamch_(char *);
00028 
00029 
00030 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00031 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00032 /*     November 2006 */
00033 
00034 /*     .. Scalar Arguments .. */
00035 /*     .. */
00036 /*     .. Array Arguments .. */
00037 /*     .. */
00038 
00039 /*  Purpose */
00040 /*  ======= */
00041 
00042 /*  SLAQSB equilibrates a symmetric band matrix A using the scaling */
00043 /*  factors in the vector S. */
00044 
00045 /*  Arguments */
00046 /*  ========= */
00047 
00048 /*  UPLO    (input) CHARACTER*1 */
00049 /*          Specifies whether the upper or lower triangular part of the */
00050 /*          symmetric matrix A is stored. */
00051 /*          = 'U':  Upper triangular */
00052 /*          = 'L':  Lower triangular */
00053 
00054 /*  N       (input) INTEGER */
00055 /*          The order of the matrix A.  N >= 0. */
00056 
00057 /*  KD      (input) INTEGER */
00058 /*          The number of super-diagonals of the matrix A if UPLO = 'U', */
00059 /*          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0. */
00060 
00061 /*  AB      (input/output) REAL array, dimension (LDAB,N) */
00062 /*          On entry, the upper or lower triangle of the symmetric band */
00063 /*          matrix A, stored in the first KD+1 rows of the array.  The */
00064 /*          j-th column of A is stored in the j-th column of the array AB */
00065 /*          as follows: */
00066 /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
00067 /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
00068 
00069 /*          On exit, if INFO = 0, the triangular factor U or L from the */
00070 /*          Cholesky factorization A = U'*U or A = L*L' of the band */
00071 /*          matrix A, in the same storage format as A. */
00072 
00073 /*  LDAB    (input) INTEGER */
00074 /*          The leading dimension of the array AB.  LDAB >= KD+1. */
00075 
00076 /*  S       (input) REAL array, dimension (N) */
00077 /*          The scale factors for A. */
00078 
00079 /*  SCOND   (input) REAL */
00080 /*          Ratio of the smallest S(i) to the largest S(i). */
00081 
00082 /*  AMAX    (input) REAL */
00083 /*          Absolute value of largest matrix entry. */
00084 
00085 /*  EQUED   (output) CHARACTER*1 */
00086 /*          Specifies whether or not equilibration was done. */
00087 /*          = 'N':  No equilibration. */
00088 /*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
00089 /*                  diag(S) * A * diag(S). */
00090 
00091 /*  Internal Parameters */
00092 /*  =================== */
00093 
00094 /*  THRESH is a threshold value used to decide if scaling should be done */
00095 /*  based on the ratio of the scaling factors.  If SCOND < THRESH, */
00096 /*  scaling is done. */
00097 
00098 /*  LARGE and SMALL are threshold values used to decide if scaling should */
00099 /*  be done based on the absolute size of the largest matrix element. */
00100 /*  If AMAX > LARGE or AMAX < SMALL, scaling is done. */
00101 
00102 /*  ===================================================================== */
00103 
00104 /*     .. Parameters .. */
00105 /*     .. */
00106 /*     .. Local Scalars .. */
00107 /*     .. */
00108 /*     .. External Functions .. */
00109 /*     .. */
00110 /*     .. Intrinsic Functions .. */
00111 /*     .. */
00112 /*     .. Executable Statements .. */
00113 
00114 /*     Quick return if possible */
00115 
00116     /* Parameter adjustments */
00117     ab_dim1 = *ldab;
00118     ab_offset = 1 + ab_dim1;
00119     ab -= ab_offset;
00120     --s;
00121 
00122     /* Function Body */
00123     if (*n <= 0) {
00124         *(unsigned char *)equed = 'N';
00125         return 0;
00126     }
00127 
00128 /*     Initialize LARGE and SMALL. */
00129 
00130     small = slamch_("Safe minimum") / slamch_("Precision");
00131     large = 1.f / small;
00132 
00133     if (*scond >= .1f && *amax >= small && *amax <= large) {
00134 
00135 /*        No equilibration */
00136 
00137         *(unsigned char *)equed = 'N';
00138     } else {
00139 
00140 /*        Replace A by diag(S) * A * diag(S). */
00141 
00142         if (lsame_(uplo, "U")) {
00143 
00144 /*           Upper triangle of A is stored in band format. */
00145 
00146             i__1 = *n;
00147             for (j = 1; j <= i__1; ++j) {
00148                 cj = s[j];
00149 /* Computing MAX */
00150                 i__2 = 1, i__3 = j - *kd;
00151                 i__4 = j;
00152                 for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
00153                     ab[*kd + 1 + i__ - j + j * ab_dim1] = cj * s[i__] * ab[*
00154                             kd + 1 + i__ - j + j * ab_dim1];
00155 /* L10: */
00156                 }
00157 /* L20: */
00158             }
00159         } else {
00160 
00161 /*           Lower triangle of A is stored. */
00162 
00163             i__1 = *n;
00164             for (j = 1; j <= i__1; ++j) {
00165                 cj = s[j];
00166 /* Computing MIN */
00167                 i__2 = *n, i__3 = j + *kd;
00168                 i__4 = min(i__2,i__3);
00169                 for (i__ = j; i__ <= i__4; ++i__) {
00170                     ab[i__ + 1 - j + j * ab_dim1] = cj * s[i__] * ab[i__ + 1 
00171                             - j + j * ab_dim1];
00172 /* L30: */
00173                 }
00174 /* L40: */
00175             }
00176         }
00177         *(unsigned char *)equed = 'Y';
00178     }
00179 
00180     return 0;
00181 
00182 /*     End of SLAQSB */
00183 
00184 } /* slaqsb_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:11