slaebz.c
Go to the documentation of this file.
00001 /* slaebz.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int slaebz_(integer *ijob, integer *nitmax, integer *n, 
00017         integer *mmax, integer *minp, integer *nbmin, real *abstol, real *
00018         reltol, real *pivmin, real *d__, real *e, real *e2, integer *nval, 
00019         real *ab, real *c__, integer *mout, integer *nab, real *work, integer 
00020         *iwork, integer *info)
00021 {
00022     /* System generated locals */
00023     integer nab_dim1, nab_offset, ab_dim1, ab_offset, i__1, i__2, i__3, i__4, 
00024             i__5, i__6;
00025     real r__1, r__2, r__3, r__4;
00026 
00027     /* Local variables */
00028     integer j, kf, ji, kl, jp, jit;
00029     real tmp1, tmp2;
00030     integer itmp1, itmp2, kfnew, klnew;
00031 
00032 
00033 /*  -- LAPACK auxiliary routine (version 3.2) -- */
00034 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00035 /*     November 2006 */
00036 
00037 /*     .. Scalar Arguments .. */
00038 /*     .. */
00039 /*     .. Array Arguments .. */
00040 /*     .. */
00041 
00042 /*  Purpose */
00043 /*  ======= */
00044 
00045 /*  SLAEBZ contains the iteration loops which compute and use the */
00046 /*  function N(w), which is the count of eigenvalues of a symmetric */
00047 /*  tridiagonal matrix T less than or equal to its argument  w.  It */
00048 /*  performs a choice of two types of loops: */
00049 
00050 /*  IJOB=1, followed by */
00051 /*  IJOB=2: It takes as input a list of intervals and returns a list of */
00052 /*          sufficiently small intervals whose union contains the same */
00053 /*          eigenvalues as the union of the original intervals. */
00054 /*          The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP. */
00055 /*          The output interval (AB(j,1),AB(j,2)] will contain */
00056 /*          eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT. */
00057 
00058 /*  IJOB=3: It performs a binary search in each input interval */
00059 /*          (AB(j,1),AB(j,2)] for a point  w(j)  such that */
00060 /*          N(w(j))=NVAL(j), and uses  C(j)  as the starting point of */
00061 /*          the search.  If such a w(j) is found, then on output */
00062 /*          AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output */
00063 /*          (AB(j,1),AB(j,2)] will be a small interval containing the */
00064 /*          point where N(w) jumps through NVAL(j), unless that point */
00065 /*          lies outside the initial interval. */
00066 
00067 /*  Note that the intervals are in all cases half-open intervals, */
00068 /*  i.e., of the form  (a,b] , which includes  b  but not  a . */
00069 
00070 /*  To avoid underflow, the matrix should be scaled so that its largest */
00071 /*  element is no greater than  overflow**(1/2) * underflow**(1/4) */
00072 /*  in absolute value.  To assure the most accurate computation */
00073 /*  of small eigenvalues, the matrix should be scaled to be */
00074 /*  not much smaller than that, either. */
00075 
00076 /*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
00077 /*  Matrix", Report CS41, Computer Science Dept., Stanford */
00078 /*  University, July 21, 1966 */
00079 
00080 /*  Note: the arguments are, in general, *not* checked for unreasonable */
00081 /*  values. */
00082 
00083 /*  Arguments */
00084 /*  ========= */
00085 
00086 /*  IJOB    (input) INTEGER */
00087 /*          Specifies what is to be done: */
00088 /*          = 1:  Compute NAB for the initial intervals. */
00089 /*          = 2:  Perform bisection iteration to find eigenvalues of T. */
00090 /*          = 3:  Perform bisection iteration to invert N(w), i.e., */
00091 /*                to find a point which has a specified number of */
00092 /*                eigenvalues of T to its left. */
00093 /*          Other values will cause SLAEBZ to return with INFO=-1. */
00094 
00095 /*  NITMAX  (input) INTEGER */
00096 /*          The maximum number of "levels" of bisection to be */
00097 /*          performed, i.e., an interval of width W will not be made */
00098 /*          smaller than 2^(-NITMAX) * W.  If not all intervals */
00099 /*          have converged after NITMAX iterations, then INFO is set */
00100 /*          to the number of non-converged intervals. */
00101 
00102 /*  N       (input) INTEGER */
00103 /*          The dimension n of the tridiagonal matrix T.  It must be at */
00104 /*          least 1. */
00105 
00106 /*  MMAX    (input) INTEGER */
00107 /*          The maximum number of intervals.  If more than MMAX intervals */
00108 /*          are generated, then SLAEBZ will quit with INFO=MMAX+1. */
00109 
00110 /*  MINP    (input) INTEGER */
00111 /*          The initial number of intervals.  It may not be greater than */
00112 /*          MMAX. */
00113 
00114 /*  NBMIN   (input) INTEGER */
00115 /*          The smallest number of intervals that should be processed */
00116 /*          using a vector loop.  If zero, then only the scalar loop */
00117 /*          will be used. */
00118 
00119 /*  ABSTOL  (input) REAL */
00120 /*          The minimum (absolute) width of an interval.  When an */
00121 /*          interval is narrower than ABSTOL, or than RELTOL times the */
00122 /*          larger (in magnitude) endpoint, then it is considered to be */
00123 /*          sufficiently small, i.e., converged.  This must be at least */
00124 /*          zero. */
00125 
00126 /*  RELTOL  (input) REAL */
00127 /*          The minimum relative width of an interval.  When an interval */
00128 /*          is narrower than ABSTOL, or than RELTOL times the larger (in */
00129 /*          magnitude) endpoint, then it is considered to be */
00130 /*          sufficiently small, i.e., converged.  Note: this should */
00131 /*          always be at least radix*machine epsilon. */
00132 
00133 /*  PIVMIN  (input) REAL */
00134 /*          The minimum absolute value of a "pivot" in the Sturm */
00135 /*          sequence loop.  This *must* be at least  max |e(j)**2| * */
00136 /*          safe_min  and at least safe_min, where safe_min is at least */
00137 /*          the smallest number that can divide one without overflow. */
00138 
00139 /*  D       (input) REAL array, dimension (N) */
00140 /*          The diagonal elements of the tridiagonal matrix T. */
00141 
00142 /*  E       (input) REAL array, dimension (N) */
00143 /*          The offdiagonal elements of the tridiagonal matrix T in */
00144 /*          positions 1 through N-1.  E(N) is arbitrary. */
00145 
00146 /*  E2      (input) REAL array, dimension (N) */
00147 /*          The squares of the offdiagonal elements of the tridiagonal */
00148 /*          matrix T.  E2(N) is ignored. */
00149 
00150 /*  NVAL    (input/output) INTEGER array, dimension (MINP) */
00151 /*          If IJOB=1 or 2, not referenced. */
00152 /*          If IJOB=3, the desired values of N(w).  The elements of NVAL */
00153 /*          will be reordered to correspond with the intervals in AB. */
00154 /*          Thus, NVAL(j) on output will not, in general be the same as */
00155 /*          NVAL(j) on input, but it will correspond with the interval */
00156 /*          (AB(j,1),AB(j,2)] on output. */
00157 
00158 /*  AB      (input/output) REAL array, dimension (MMAX,2) */
00159 /*          The endpoints of the intervals.  AB(j,1) is  a(j), the left */
00160 /*          endpoint of the j-th interval, and AB(j,2) is b(j), the */
00161 /*          right endpoint of the j-th interval.  The input intervals */
00162 /*          will, in general, be modified, split, and reordered by the */
00163 /*          calculation. */
00164 
00165 /*  C       (input/output) REAL array, dimension (MMAX) */
00166 /*          If IJOB=1, ignored. */
00167 /*          If IJOB=2, workspace. */
00168 /*          If IJOB=3, then on input C(j) should be initialized to the */
00169 /*          first search point in the binary search. */
00170 
00171 /*  MOUT    (output) INTEGER */
00172 /*          If IJOB=1, the number of eigenvalues in the intervals. */
00173 /*          If IJOB=2 or 3, the number of intervals output. */
00174 /*          If IJOB=3, MOUT will equal MINP. */
00175 
00176 /*  NAB     (input/output) INTEGER array, dimension (MMAX,2) */
00177 /*          If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). */
00178 /*          If IJOB=2, then on input, NAB(i,j) should be set.  It must */
00179 /*             satisfy the condition: */
00180 /*             N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)), */
00181 /*             which means that in interval i only eigenvalues */
00182 /*             NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually, */
00183 /*             NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with */
00184 /*             IJOB=1. */
00185 /*             On output, NAB(i,j) will contain */
00186 /*             max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of */
00187 /*             the input interval that the output interval */
00188 /*             (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the */
00189 /*             the input values of NAB(k,1) and NAB(k,2). */
00190 /*          If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)), */
00191 /*             unless N(w) > NVAL(i) for all search points  w , in which */
00192 /*             case NAB(i,1) will not be modified, i.e., the output */
00193 /*             value will be the same as the input value (modulo */
00194 /*             reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) */
00195 /*             for all search points  w , in which case NAB(i,2) will */
00196 /*             not be modified.  Normally, NAB should be set to some */
00197 /*             distinctive value(s) before SLAEBZ is called. */
00198 
00199 /*  WORK    (workspace) REAL array, dimension (MMAX) */
00200 /*          Workspace. */
00201 
00202 /*  IWORK   (workspace) INTEGER array, dimension (MMAX) */
00203 /*          Workspace. */
00204 
00205 /*  INFO    (output) INTEGER */
00206 /*          = 0:       All intervals converged. */
00207 /*          = 1--MMAX: The last INFO intervals did not converge. */
00208 /*          = MMAX+1:  More than MMAX intervals were generated. */
00209 
00210 /*  Further Details */
00211 /*  =============== */
00212 
00213 /*      This routine is intended to be called only by other LAPACK */
00214 /*  routines, thus the interface is less user-friendly.  It is intended */
00215 /*  for two purposes: */
00216 
00217 /*  (a) finding eigenvalues.  In this case, SLAEBZ should have one or */
00218 /*      more initial intervals set up in AB, and SLAEBZ should be called */
00219 /*      with IJOB=1.  This sets up NAB, and also counts the eigenvalues. */
00220 /*      Intervals with no eigenvalues would usually be thrown out at */
00221 /*      this point.  Also, if not all the eigenvalues in an interval i */
00222 /*      are desired, NAB(i,1) can be increased or NAB(i,2) decreased. */
00223 /*      For example, set NAB(i,1)=NAB(i,2)-1 to get the largest */
00224 /*      eigenvalue.  SLAEBZ is then called with IJOB=2 and MMAX */
00225 /*      no smaller than the value of MOUT returned by the call with */
00226 /*      IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1 */
00227 /*      through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the */
00228 /*      tolerance specified by ABSTOL and RELTOL. */
00229 
00230 /*  (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). */
00231 /*      In this case, start with a Gershgorin interval  (a,b).  Set up */
00232 /*      AB to contain 2 search intervals, both initially (a,b).  One */
00233 /*      NVAL element should contain  f-1  and the other should contain  l */
00234 /*      , while C should contain a and b, resp.  NAB(i,1) should be -1 */
00235 /*      and NAB(i,2) should be N+1, to flag an error if the desired */
00236 /*      interval does not lie in (a,b).  SLAEBZ is then called with */
00237 /*      IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals -- */
00238 /*      j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while */
00239 /*      if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r */
00240 /*      >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and */
00241 /*      N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and */
00242 /*      w(l-r)=...=w(l+k) are handled similarly. */
00243 
00244 /*  ===================================================================== */
00245 
00246 /*     .. Parameters .. */
00247 /*     .. */
00248 /*     .. Local Scalars .. */
00249 /*     .. */
00250 /*     .. Intrinsic Functions .. */
00251 /*     .. */
00252 /*     .. Executable Statements .. */
00253 
00254 /*     Check for Errors */
00255 
00256     /* Parameter adjustments */
00257     nab_dim1 = *mmax;
00258     nab_offset = 1 + nab_dim1;
00259     nab -= nab_offset;
00260     ab_dim1 = *mmax;
00261     ab_offset = 1 + ab_dim1;
00262     ab -= ab_offset;
00263     --d__;
00264     --e;
00265     --e2;
00266     --nval;
00267     --c__;
00268     --work;
00269     --iwork;
00270 
00271     /* Function Body */
00272     *info = 0;
00273     if (*ijob < 1 || *ijob > 3) {
00274         *info = -1;
00275         return 0;
00276     }
00277 
00278 /*     Initialize NAB */
00279 
00280     if (*ijob == 1) {
00281 
00282 /*        Compute the number of eigenvalues in the initial intervals. */
00283 
00284         *mout = 0;
00285 /* DIR$ NOVECTOR */
00286         i__1 = *minp;
00287         for (ji = 1; ji <= i__1; ++ji) {
00288             for (jp = 1; jp <= 2; ++jp) {
00289                 tmp1 = d__[1] - ab[ji + jp * ab_dim1];
00290                 if (dabs(tmp1) < *pivmin) {
00291                     tmp1 = -(*pivmin);
00292                 }
00293                 nab[ji + jp * nab_dim1] = 0;
00294                 if (tmp1 <= 0.f) {
00295                     nab[ji + jp * nab_dim1] = 1;
00296                 }
00297 
00298                 i__2 = *n;
00299                 for (j = 2; j <= i__2; ++j) {
00300                     tmp1 = d__[j] - e2[j - 1] / tmp1 - ab[ji + jp * ab_dim1];
00301                     if (dabs(tmp1) < *pivmin) {
00302                         tmp1 = -(*pivmin);
00303                     }
00304                     if (tmp1 <= 0.f) {
00305                         ++nab[ji + jp * nab_dim1];
00306                     }
00307 /* L10: */
00308                 }
00309 /* L20: */
00310             }
00311             *mout = *mout + nab[ji + (nab_dim1 << 1)] - nab[ji + nab_dim1];
00312 /* L30: */
00313         }
00314         return 0;
00315     }
00316 
00317 /*     Initialize for loop */
00318 
00319 /*     KF and KL have the following meaning: */
00320 /*        Intervals 1,...,KF-1 have converged. */
00321 /*        Intervals KF,...,KL  still need to be refined. */
00322 
00323     kf = 1;
00324     kl = *minp;
00325 
00326 /*     If IJOB=2, initialize C. */
00327 /*     If IJOB=3, use the user-supplied starting point. */
00328 
00329     if (*ijob == 2) {
00330         i__1 = *minp;
00331         for (ji = 1; ji <= i__1; ++ji) {
00332             c__[ji] = (ab[ji + ab_dim1] + ab[ji + (ab_dim1 << 1)]) * .5f;
00333 /* L40: */
00334         }
00335     }
00336 
00337 /*     Iteration loop */
00338 
00339     i__1 = *nitmax;
00340     for (jit = 1; jit <= i__1; ++jit) {
00341 
00342 /*        Loop over intervals */
00343 
00344         if (kl - kf + 1 >= *nbmin && *nbmin > 0) {
00345 
00346 /*           Begin of Parallel Version of the loop */
00347 
00348             i__2 = kl;
00349             for (ji = kf; ji <= i__2; ++ji) {
00350 
00351 /*              Compute N(c), the number of eigenvalues less than c */
00352 
00353                 work[ji] = d__[1] - c__[ji];
00354                 iwork[ji] = 0;
00355                 if (work[ji] <= *pivmin) {
00356                     iwork[ji] = 1;
00357 /* Computing MIN */
00358                     r__1 = work[ji], r__2 = -(*pivmin);
00359                     work[ji] = dmin(r__1,r__2);
00360                 }
00361 
00362                 i__3 = *n;
00363                 for (j = 2; j <= i__3; ++j) {
00364                     work[ji] = d__[j] - e2[j - 1] / work[ji] - c__[ji];
00365                     if (work[ji] <= *pivmin) {
00366                         ++iwork[ji];
00367 /* Computing MIN */
00368                         r__1 = work[ji], r__2 = -(*pivmin);
00369                         work[ji] = dmin(r__1,r__2);
00370                     }
00371 /* L50: */
00372                 }
00373 /* L60: */
00374             }
00375 
00376             if (*ijob <= 2) {
00377 
00378 /*              IJOB=2: Choose all intervals containing eigenvalues. */
00379 
00380                 klnew = kl;
00381                 i__2 = kl;
00382                 for (ji = kf; ji <= i__2; ++ji) {
00383 
00384 /*                 Insure that N(w) is monotone */
00385 
00386 /* Computing MIN */
00387 /* Computing MAX */
00388                     i__5 = nab[ji + nab_dim1], i__6 = iwork[ji];
00389                     i__3 = nab[ji + (nab_dim1 << 1)], i__4 = max(i__5,i__6);
00390                     iwork[ji] = min(i__3,i__4);
00391 
00392 /*                 Update the Queue -- add intervals if both halves */
00393 /*                 contain eigenvalues. */
00394 
00395                     if (iwork[ji] == nab[ji + (nab_dim1 << 1)]) {
00396 
00397 /*                    No eigenvalue in the upper interval: */
00398 /*                    just use the lower interval. */
00399 
00400                         ab[ji + (ab_dim1 << 1)] = c__[ji];
00401 
00402                     } else if (iwork[ji] == nab[ji + nab_dim1]) {
00403 
00404 /*                    No eigenvalue in the lower interval: */
00405 /*                    just use the upper interval. */
00406 
00407                         ab[ji + ab_dim1] = c__[ji];
00408                     } else {
00409                         ++klnew;
00410                         if (klnew <= *mmax) {
00411 
00412 /*                       Eigenvalue in both intervals -- add upper to */
00413 /*                       queue. */
00414 
00415                             ab[klnew + (ab_dim1 << 1)] = ab[ji + (ab_dim1 << 
00416                                     1)];
00417                             nab[klnew + (nab_dim1 << 1)] = nab[ji + (nab_dim1 
00418                                     << 1)];
00419                             ab[klnew + ab_dim1] = c__[ji];
00420                             nab[klnew + nab_dim1] = iwork[ji];
00421                             ab[ji + (ab_dim1 << 1)] = c__[ji];
00422                             nab[ji + (nab_dim1 << 1)] = iwork[ji];
00423                         } else {
00424                             *info = *mmax + 1;
00425                         }
00426                     }
00427 /* L70: */
00428                 }
00429                 if (*info != 0) {
00430                     return 0;
00431                 }
00432                 kl = klnew;
00433             } else {
00434 
00435 /*              IJOB=3: Binary search.  Keep only the interval containing */
00436 /*                      w   s.t. N(w) = NVAL */
00437 
00438                 i__2 = kl;
00439                 for (ji = kf; ji <= i__2; ++ji) {
00440                     if (iwork[ji] <= nval[ji]) {
00441                         ab[ji + ab_dim1] = c__[ji];
00442                         nab[ji + nab_dim1] = iwork[ji];
00443                     }
00444                     if (iwork[ji] >= nval[ji]) {
00445                         ab[ji + (ab_dim1 << 1)] = c__[ji];
00446                         nab[ji + (nab_dim1 << 1)] = iwork[ji];
00447                     }
00448 /* L80: */
00449                 }
00450             }
00451 
00452         } else {
00453 
00454 /*           End of Parallel Version of the loop */
00455 
00456 /*           Begin of Serial Version of the loop */
00457 
00458             klnew = kl;
00459             i__2 = kl;
00460             for (ji = kf; ji <= i__2; ++ji) {
00461 
00462 /*              Compute N(w), the number of eigenvalues less than w */
00463 
00464                 tmp1 = c__[ji];
00465                 tmp2 = d__[1] - tmp1;
00466                 itmp1 = 0;
00467                 if (tmp2 <= *pivmin) {
00468                     itmp1 = 1;
00469 /* Computing MIN */
00470                     r__1 = tmp2, r__2 = -(*pivmin);
00471                     tmp2 = dmin(r__1,r__2);
00472                 }
00473 
00474 /*              A series of compiler directives to defeat vectorization */
00475 /*              for the next loop */
00476 
00477 /* $PL$ CMCHAR=' ' */
00478 /* DIR$          NEXTSCALAR */
00479 /* $DIR          SCALAR */
00480 /* DIR$          NEXT SCALAR */
00481 /* VD$L          NOVECTOR */
00482 /* DEC$          NOVECTOR */
00483 /* VD$           NOVECTOR */
00484 /* VDIR          NOVECTOR */
00485 /* VOCL          LOOP,SCALAR */
00486 /* IBM           PREFER SCALAR */
00487 /* $PL$ CMCHAR='*' */
00488 
00489                 i__3 = *n;
00490                 for (j = 2; j <= i__3; ++j) {
00491                     tmp2 = d__[j] - e2[j - 1] / tmp2 - tmp1;
00492                     if (tmp2 <= *pivmin) {
00493                         ++itmp1;
00494 /* Computing MIN */
00495                         r__1 = tmp2, r__2 = -(*pivmin);
00496                         tmp2 = dmin(r__1,r__2);
00497                     }
00498 /* L90: */
00499                 }
00500 
00501                 if (*ijob <= 2) {
00502 
00503 /*                 IJOB=2: Choose all intervals containing eigenvalues. */
00504 
00505 /*                 Insure that N(w) is monotone */
00506 
00507 /* Computing MIN */
00508 /* Computing MAX */
00509                     i__5 = nab[ji + nab_dim1];
00510                     i__3 = nab[ji + (nab_dim1 << 1)], i__4 = max(i__5,itmp1);
00511                     itmp1 = min(i__3,i__4);
00512 
00513 /*                 Update the Queue -- add intervals if both halves */
00514 /*                 contain eigenvalues. */
00515 
00516                     if (itmp1 == nab[ji + (nab_dim1 << 1)]) {
00517 
00518 /*                    No eigenvalue in the upper interval: */
00519 /*                    just use the lower interval. */
00520 
00521                         ab[ji + (ab_dim1 << 1)] = tmp1;
00522 
00523                     } else if (itmp1 == nab[ji + nab_dim1]) {
00524 
00525 /*                    No eigenvalue in the lower interval: */
00526 /*                    just use the upper interval. */
00527 
00528                         ab[ji + ab_dim1] = tmp1;
00529                     } else if (klnew < *mmax) {
00530 
00531 /*                    Eigenvalue in both intervals -- add upper to queue. */
00532 
00533                         ++klnew;
00534                         ab[klnew + (ab_dim1 << 1)] = ab[ji + (ab_dim1 << 1)];
00535                         nab[klnew + (nab_dim1 << 1)] = nab[ji + (nab_dim1 << 
00536                                 1)];
00537                         ab[klnew + ab_dim1] = tmp1;
00538                         nab[klnew + nab_dim1] = itmp1;
00539                         ab[ji + (ab_dim1 << 1)] = tmp1;
00540                         nab[ji + (nab_dim1 << 1)] = itmp1;
00541                     } else {
00542                         *info = *mmax + 1;
00543                         return 0;
00544                     }
00545                 } else {
00546 
00547 /*                 IJOB=3: Binary search.  Keep only the interval */
00548 /*                         containing  w  s.t. N(w) = NVAL */
00549 
00550                     if (itmp1 <= nval[ji]) {
00551                         ab[ji + ab_dim1] = tmp1;
00552                         nab[ji + nab_dim1] = itmp1;
00553                     }
00554                     if (itmp1 >= nval[ji]) {
00555                         ab[ji + (ab_dim1 << 1)] = tmp1;
00556                         nab[ji + (nab_dim1 << 1)] = itmp1;
00557                     }
00558                 }
00559 /* L100: */
00560             }
00561             kl = klnew;
00562 
00563 /*           End of Serial Version of the loop */
00564 
00565         }
00566 
00567 /*        Check for convergence */
00568 
00569         kfnew = kf;
00570         i__2 = kl;
00571         for (ji = kf; ji <= i__2; ++ji) {
00572             tmp1 = (r__1 = ab[ji + (ab_dim1 << 1)] - ab[ji + ab_dim1], dabs(
00573                     r__1));
00574 /* Computing MAX */
00575             r__3 = (r__1 = ab[ji + (ab_dim1 << 1)], dabs(r__1)), r__4 = (r__2 
00576                     = ab[ji + ab_dim1], dabs(r__2));
00577             tmp2 = dmax(r__3,r__4);
00578 /* Computing MAX */
00579             r__1 = max(*abstol,*pivmin), r__2 = *reltol * tmp2;
00580             if (tmp1 < dmax(r__1,r__2) || nab[ji + nab_dim1] >= nab[ji + (
00581                     nab_dim1 << 1)]) {
00582 
00583 /*              Converged -- Swap with position KFNEW, */
00584 /*                           then increment KFNEW */
00585 
00586                 if (ji > kfnew) {
00587                     tmp1 = ab[ji + ab_dim1];
00588                     tmp2 = ab[ji + (ab_dim1 << 1)];
00589                     itmp1 = nab[ji + nab_dim1];
00590                     itmp2 = nab[ji + (nab_dim1 << 1)];
00591                     ab[ji + ab_dim1] = ab[kfnew + ab_dim1];
00592                     ab[ji + (ab_dim1 << 1)] = ab[kfnew + (ab_dim1 << 1)];
00593                     nab[ji + nab_dim1] = nab[kfnew + nab_dim1];
00594                     nab[ji + (nab_dim1 << 1)] = nab[kfnew + (nab_dim1 << 1)];
00595                     ab[kfnew + ab_dim1] = tmp1;
00596                     ab[kfnew + (ab_dim1 << 1)] = tmp2;
00597                     nab[kfnew + nab_dim1] = itmp1;
00598                     nab[kfnew + (nab_dim1 << 1)] = itmp2;
00599                     if (*ijob == 3) {
00600                         itmp1 = nval[ji];
00601                         nval[ji] = nval[kfnew];
00602                         nval[kfnew] = itmp1;
00603                     }
00604                 }
00605                 ++kfnew;
00606             }
00607 /* L110: */
00608         }
00609         kf = kfnew;
00610 
00611 /*        Choose Midpoints */
00612 
00613         i__2 = kl;
00614         for (ji = kf; ji <= i__2; ++ji) {
00615             c__[ji] = (ab[ji + ab_dim1] + ab[ji + (ab_dim1 << 1)]) * .5f;
00616 /* L120: */
00617         }
00618 
00619 /*        If no more intervals to refine, quit. */
00620 
00621         if (kf > kl) {
00622             goto L140;
00623         }
00624 /* L130: */
00625     }
00626 
00627 /*     Converged */
00628 
00629 L140:
00630 /* Computing MAX */
00631     i__1 = kl + 1 - kf;
00632     *info = max(i__1,0);
00633     *mout = kl;
00634 
00635     return 0;
00636 
00637 /*     End of SLAEBZ */
00638 
00639 } /* slaebz_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:09