00001 /* sla_gbrpvgrw.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 doublereal sla_gbrpvgrw__(integer *n, integer *kl, integer *ku, integer * 00017 ncols, real *ab, integer *ldab, real *afb, integer *ldafb) 00018 { 00019 /* System generated locals */ 00020 integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4; 00021 real ret_val, r__1, r__2; 00022 00023 /* Local variables */ 00024 integer i__, j, kd; 00025 real amax, umax, rpvgrw; 00026 00027 00028 /* -- LAPACK routine (version 3.2.1) -- */ 00029 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00030 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00031 /* -- April 2009 -- */ 00032 00033 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00034 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00035 00036 /* .. */ 00037 /* .. Scalar Arguments .. */ 00038 /* .. */ 00039 /* .. Array Arguments .. */ 00040 /* .. */ 00041 00042 /* Purpose */ 00043 /* ======= */ 00044 00045 /* SLA_GBRPVGRW computes the reciprocal pivot growth factor */ 00046 /* norm(A)/norm(U). The "max absolute element" norm is used. If this is */ 00047 /* much less than 1, the stability of the LU factorization of the */ 00048 /* (equilibrated) matrix A could be poor. This also means that the */ 00049 /* solution X, estimated condition numbers, and error bounds could be */ 00050 /* unreliable. */ 00051 00052 /* Arguments */ 00053 /* ========= */ 00054 00055 /* N (input) INTEGER */ 00056 /* The number of linear equations, i.e., the order of the */ 00057 /* matrix A. N >= 0. */ 00058 00059 /* KL (input) INTEGER */ 00060 /* The number of subdiagonals within the band of A. KL >= 0. */ 00061 00062 /* KU (input) INTEGER */ 00063 /* The number of superdiagonals within the band of A. KU >= 0. */ 00064 00065 /* NCOLS (input) INTEGER */ 00066 /* The number of columns of the matrix A. NCOLS >= 0. */ 00067 00068 /* AB (input) REAL array, dimension (LDAB,N) */ 00069 /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */ 00070 /* The j-th column of A is stored in the j-th column of the */ 00071 /* array AB as follows: */ 00072 /* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */ 00073 00074 /* LDAB (input) INTEGER */ 00075 /* The leading dimension of the array AB. LDAB >= KL+KU+1. */ 00076 00077 /* AFB (input) REAL array, dimension (LDAFB,N) */ 00078 /* Details of the LU factorization of the band matrix A, as */ 00079 /* computed by SGBTRF. U is stored as an upper triangular */ 00080 /* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */ 00081 /* and the multipliers used during the factorization are stored */ 00082 /* in rows KL+KU+2 to 2*KL+KU+1. */ 00083 00084 /* LDAFB (input) INTEGER */ 00085 /* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */ 00086 00087 /* ===================================================================== */ 00088 00089 /* .. Local Scalars .. */ 00090 /* .. */ 00091 /* .. Intrinsic Functions .. */ 00092 /* .. */ 00093 /* .. Executable Statements .. */ 00094 00095 /* Parameter adjustments */ 00096 ab_dim1 = *ldab; 00097 ab_offset = 1 + ab_dim1; 00098 ab -= ab_offset; 00099 afb_dim1 = *ldafb; 00100 afb_offset = 1 + afb_dim1; 00101 afb -= afb_offset; 00102 00103 /* Function Body */ 00104 rpvgrw = 1.f; 00105 kd = *ku + 1; 00106 i__1 = *ncols; 00107 for (j = 1; j <= i__1; ++j) { 00108 amax = 0.f; 00109 umax = 0.f; 00110 /* Computing MAX */ 00111 i__2 = j - *ku; 00112 /* Computing MIN */ 00113 i__4 = j + *kl; 00114 i__3 = min(i__4,*n); 00115 for (i__ = max(i__2,1); i__ <= i__3; ++i__) { 00116 /* Computing MAX */ 00117 r__2 = (r__1 = ab[kd + i__ - j + j * ab_dim1], dabs(r__1)); 00118 amax = dmax(r__2,amax); 00119 } 00120 /* Computing MAX */ 00121 i__3 = j - *ku; 00122 i__2 = j; 00123 for (i__ = max(i__3,1); i__ <= i__2; ++i__) { 00124 /* Computing MAX */ 00125 r__2 = (r__1 = afb[kd + i__ - j + j * afb_dim1], dabs(r__1)); 00126 umax = dmax(r__2,umax); 00127 } 00128 if (umax != 0.f) { 00129 /* Computing MIN */ 00130 r__1 = amax / umax; 00131 rpvgrw = dmin(r__1,rpvgrw); 00132 } 00133 } 00134 ret_val = rpvgrw; 00135 return ret_val; 00136 } /* sla_gbrpvgrw__ */