00001 /* sgttrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static integer c_n1 = -1; 00020 00021 /* Subroutine */ int sgttrs_(char *trans, integer *n, integer *nrhs, real *dl, 00022 real *d__, real *du, real *du2, integer *ipiv, real *b, integer *ldb, 00023 integer *info) 00024 { 00025 /* System generated locals */ 00026 integer b_dim1, b_offset, i__1, i__2, i__3; 00027 00028 /* Local variables */ 00029 integer j, jb, nb; 00030 extern /* Subroutine */ int sgtts2_(integer *, integer *, integer *, real 00031 *, real *, real *, real *, integer *, real *, integer *), xerbla_( 00032 char *, integer *); 00033 extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 00034 integer *, integer *); 00035 integer itrans; 00036 logical notran; 00037 00038 00039 /* -- LAPACK routine (version 3.2) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* .. Scalar Arguments .. */ 00044 /* .. */ 00045 /* .. Array Arguments .. */ 00046 /* .. */ 00047 00048 /* Purpose */ 00049 /* ======= */ 00050 00051 /* SGTTRS solves one of the systems of equations */ 00052 /* A*X = B or A'*X = B, */ 00053 /* with a tridiagonal matrix A using the LU factorization computed */ 00054 /* by SGTTRF. */ 00055 00056 /* Arguments */ 00057 /* ========= */ 00058 00059 /* TRANS (input) CHARACTER*1 */ 00060 /* Specifies the form of the system of equations. */ 00061 /* = 'N': A * X = B (No transpose) */ 00062 /* = 'T': A'* X = B (Transpose) */ 00063 /* = 'C': A'* X = B (Conjugate transpose = Transpose) */ 00064 00065 /* N (input) INTEGER */ 00066 /* The order of the matrix A. */ 00067 00068 /* NRHS (input) INTEGER */ 00069 /* The number of right hand sides, i.e., the number of columns */ 00070 /* of the matrix B. NRHS >= 0. */ 00071 00072 /* DL (input) REAL array, dimension (N-1) */ 00073 /* The (n-1) multipliers that define the matrix L from the */ 00074 /* LU factorization of A. */ 00075 00076 /* D (input) REAL array, dimension (N) */ 00077 /* The n diagonal elements of the upper triangular matrix U from */ 00078 /* the LU factorization of A. */ 00079 00080 /* DU (input) REAL array, dimension (N-1) */ 00081 /* The (n-1) elements of the first super-diagonal of U. */ 00082 00083 /* DU2 (input) REAL array, dimension (N-2) */ 00084 /* The (n-2) elements of the second super-diagonal of U. */ 00085 00086 /* IPIV (input) INTEGER array, dimension (N) */ 00087 /* The pivot indices; for 1 <= i <= n, row i of the matrix was */ 00088 /* interchanged with row IPIV(i). IPIV(i) will always be either */ 00089 /* i or i+1; IPIV(i) = i indicates a row interchange was not */ 00090 /* required. */ 00091 00092 /* B (input/output) REAL array, dimension (LDB,NRHS) */ 00093 /* On entry, the matrix of right hand side vectors B. */ 00094 /* On exit, B is overwritten by the solution vectors X. */ 00095 00096 /* LDB (input) INTEGER */ 00097 /* The leading dimension of the array B. LDB >= max(1,N). */ 00098 00099 /* INFO (output) INTEGER */ 00100 /* = 0: successful exit */ 00101 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00102 00103 /* ===================================================================== */ 00104 00105 /* .. Local Scalars .. */ 00106 /* .. */ 00107 /* .. External Functions .. */ 00108 /* .. */ 00109 /* .. External Subroutines .. */ 00110 /* .. */ 00111 /* .. Intrinsic Functions .. */ 00112 /* .. */ 00113 /* .. Executable Statements .. */ 00114 00115 /* Parameter adjustments */ 00116 --dl; 00117 --d__; 00118 --du; 00119 --du2; 00120 --ipiv; 00121 b_dim1 = *ldb; 00122 b_offset = 1 + b_dim1; 00123 b -= b_offset; 00124 00125 /* Function Body */ 00126 *info = 0; 00127 notran = *(unsigned char *)trans == 'N' || *(unsigned char *)trans == 'n'; 00128 if (! notran && ! (*(unsigned char *)trans == 'T' || *(unsigned char *) 00129 trans == 't') && ! (*(unsigned char *)trans == 'C' || *(unsigned 00130 char *)trans == 'c')) { 00131 *info = -1; 00132 } else if (*n < 0) { 00133 *info = -2; 00134 } else if (*nrhs < 0) { 00135 *info = -3; 00136 } else if (*ldb < max(*n,1)) { 00137 *info = -10; 00138 } 00139 if (*info != 0) { 00140 i__1 = -(*info); 00141 xerbla_("SGTTRS", &i__1); 00142 return 0; 00143 } 00144 00145 /* Quick return if possible */ 00146 00147 if (*n == 0 || *nrhs == 0) { 00148 return 0; 00149 } 00150 00151 /* Decode TRANS */ 00152 00153 if (notran) { 00154 itrans = 0; 00155 } else { 00156 itrans = 1; 00157 } 00158 00159 /* Determine the number of right-hand sides to solve at a time. */ 00160 00161 if (*nrhs == 1) { 00162 nb = 1; 00163 } else { 00164 /* Computing MAX */ 00165 i__1 = 1, i__2 = ilaenv_(&c__1, "SGTTRS", trans, n, nrhs, &c_n1, & 00166 c_n1); 00167 nb = max(i__1,i__2); 00168 } 00169 00170 if (nb >= *nrhs) { 00171 sgtts2_(&itrans, n, nrhs, &dl[1], &d__[1], &du[1], &du2[1], &ipiv[1], 00172 &b[b_offset], ldb); 00173 } else { 00174 i__1 = *nrhs; 00175 i__2 = nb; 00176 for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { 00177 /* Computing MIN */ 00178 i__3 = *nrhs - j + 1; 00179 jb = min(i__3,nb); 00180 sgtts2_(&itrans, n, &jb, &dl[1], &d__[1], &du[1], &du2[1], &ipiv[ 00181 1], &b[j * b_dim1 + 1], ldb); 00182 /* L10: */ 00183 } 00184 } 00185 00186 /* End of SGTTRS */ 00187 00188 return 0; 00189 } /* sgttrs_ */