00001 /* sgtcon.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int sgtcon_(char *norm, integer *n, real *dl, real *d__, 00021 real *du, real *du2, integer *ipiv, real *anorm, real *rcond, real * 00022 work, integer *iwork, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer i__1; 00026 00027 /* Local variables */ 00028 integer i__, kase, kase1; 00029 extern logical lsame_(char *, char *); 00030 integer isave[3]; 00031 extern /* Subroutine */ int slacn2_(integer *, real *, real *, integer *, 00032 real *, integer *, integer *), xerbla_(char *, integer *); 00033 real ainvnm; 00034 logical onenrm; 00035 extern /* Subroutine */ int sgttrs_(char *, integer *, integer *, real *, 00036 real *, real *, real *, integer *, real *, integer *, integer *); 00037 00038 00039 /* -- LAPACK routine (version 3.2) -- */ 00040 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00041 /* November 2006 */ 00042 00043 /* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */ 00044 00045 /* .. Scalar Arguments .. */ 00046 /* .. */ 00047 /* .. Array Arguments .. */ 00048 /* .. */ 00049 00050 /* Purpose */ 00051 /* ======= */ 00052 00053 /* SGTCON estimates the reciprocal of the condition number of a real */ 00054 /* tridiagonal matrix A using the LU factorization as computed by */ 00055 /* SGTTRF. */ 00056 00057 /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ 00058 /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ 00059 00060 /* Arguments */ 00061 /* ========= */ 00062 00063 /* NORM (input) CHARACTER*1 */ 00064 /* Specifies whether the 1-norm condition number or the */ 00065 /* infinity-norm condition number is required: */ 00066 /* = '1' or 'O': 1-norm; */ 00067 /* = 'I': Infinity-norm. */ 00068 00069 /* N (input) INTEGER */ 00070 /* The order of the matrix A. N >= 0. */ 00071 00072 /* DL (input) REAL array, dimension (N-1) */ 00073 /* The (n-1) multipliers that define the matrix L from the */ 00074 /* LU factorization of A as computed by SGTTRF. */ 00075 00076 /* D (input) REAL array, dimension (N) */ 00077 /* The n diagonal elements of the upper triangular matrix U from */ 00078 /* the LU factorization of A. */ 00079 00080 /* DU (input) REAL array, dimension (N-1) */ 00081 /* The (n-1) elements of the first superdiagonal of U. */ 00082 00083 /* DU2 (input) REAL array, dimension (N-2) */ 00084 /* The (n-2) elements of the second superdiagonal of U. */ 00085 00086 /* IPIV (input) INTEGER array, dimension (N) */ 00087 /* The pivot indices; for 1 <= i <= n, row i of the matrix was */ 00088 /* interchanged with row IPIV(i). IPIV(i) will always be either */ 00089 /* i or i+1; IPIV(i) = i indicates a row interchange was not */ 00090 /* required. */ 00091 00092 /* ANORM (input) REAL */ 00093 /* If NORM = '1' or 'O', the 1-norm of the original matrix A. */ 00094 /* If NORM = 'I', the infinity-norm of the original matrix A. */ 00095 00096 /* RCOND (output) REAL */ 00097 /* The reciprocal of the condition number of the matrix A, */ 00098 /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ 00099 /* estimate of the 1-norm of inv(A) computed in this routine. */ 00100 00101 /* WORK (workspace) REAL array, dimension (2*N) */ 00102 00103 /* IWORK (workspace) INTEGER array, dimension (N) */ 00104 00105 /* INFO (output) INTEGER */ 00106 /* = 0: successful exit */ 00107 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00108 00109 /* ===================================================================== */ 00110 00111 /* .. Parameters .. */ 00112 /* .. */ 00113 /* .. Local Scalars .. */ 00114 /* .. */ 00115 /* .. Local Arrays .. */ 00116 /* .. */ 00117 /* .. External Functions .. */ 00118 /* .. */ 00119 /* .. External Subroutines .. */ 00120 /* .. */ 00121 /* .. Executable Statements .. */ 00122 00123 /* Test the input arguments. */ 00124 00125 /* Parameter adjustments */ 00126 --iwork; 00127 --work; 00128 --ipiv; 00129 --du2; 00130 --du; 00131 --d__; 00132 --dl; 00133 00134 /* Function Body */ 00135 *info = 0; 00136 onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); 00137 if (! onenrm && ! lsame_(norm, "I")) { 00138 *info = -1; 00139 } else if (*n < 0) { 00140 *info = -2; 00141 } else if (*anorm < 0.f) { 00142 *info = -8; 00143 } 00144 if (*info != 0) { 00145 i__1 = -(*info); 00146 xerbla_("SGTCON", &i__1); 00147 return 0; 00148 } 00149 00150 /* Quick return if possible */ 00151 00152 *rcond = 0.f; 00153 if (*n == 0) { 00154 *rcond = 1.f; 00155 return 0; 00156 } else if (*anorm == 0.f) { 00157 return 0; 00158 } 00159 00160 /* Check that D(1:N) is non-zero. */ 00161 00162 i__1 = *n; 00163 for (i__ = 1; i__ <= i__1; ++i__) { 00164 if (d__[i__] == 0.f) { 00165 return 0; 00166 } 00167 /* L10: */ 00168 } 00169 00170 ainvnm = 0.f; 00171 if (onenrm) { 00172 kase1 = 1; 00173 } else { 00174 kase1 = 2; 00175 } 00176 kase = 0; 00177 L20: 00178 slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); 00179 if (kase != 0) { 00180 if (kase == kase1) { 00181 00182 /* Multiply by inv(U)*inv(L). */ 00183 00184 sgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1] 00185 , &ipiv[1], &work[1], n, info); 00186 } else { 00187 00188 /* Multiply by inv(L')*inv(U'). */ 00189 00190 sgttrs_("Transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1], & 00191 ipiv[1], &work[1], n, info); 00192 } 00193 goto L20; 00194 } 00195 00196 /* Compute the estimate of the reciprocal condition number. */ 00197 00198 if (ainvnm != 0.f) { 00199 *rcond = 1.f / ainvnm / *anorm; 00200 } 00201 00202 return 0; 00203 00204 /* End of SGTCON */ 00205 00206 } /* sgtcon_ */