00001 /* sgetf2.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static real c_b8 = -1.f; 00020 00021 /* Subroutine */ int sgetf2_(integer *m, integer *n, real *a, integer *lda, 00022 integer *ipiv, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, i__1, i__2, i__3; 00026 real r__1; 00027 00028 /* Local variables */ 00029 integer i__, j, jp; 00030 extern /* Subroutine */ int sger_(integer *, integer *, real *, real *, 00031 integer *, real *, integer *, real *, integer *), sscal_(integer * 00032 , real *, real *, integer *); 00033 real sfmin; 00034 extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 00035 integer *); 00036 extern doublereal slamch_(char *); 00037 extern /* Subroutine */ int xerbla_(char *, integer *); 00038 extern integer isamax_(integer *, real *, integer *); 00039 00040 00041 /* -- LAPACK routine (version 3.2) -- */ 00042 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00043 /* November 2006 */ 00044 00045 /* .. Scalar Arguments .. */ 00046 /* .. */ 00047 /* .. Array Arguments .. */ 00048 /* .. */ 00049 00050 /* Purpose */ 00051 /* ======= */ 00052 00053 /* SGETF2 computes an LU factorization of a general m-by-n matrix A */ 00054 /* using partial pivoting with row interchanges. */ 00055 00056 /* The factorization has the form */ 00057 /* A = P * L * U */ 00058 /* where P is a permutation matrix, L is lower triangular with unit */ 00059 /* diagonal elements (lower trapezoidal if m > n), and U is upper */ 00060 /* triangular (upper trapezoidal if m < n). */ 00061 00062 /* This is the right-looking Level 2 BLAS version of the algorithm. */ 00063 00064 /* Arguments */ 00065 /* ========= */ 00066 00067 /* M (input) INTEGER */ 00068 /* The number of rows of the matrix A. M >= 0. */ 00069 00070 /* N (input) INTEGER */ 00071 /* The number of columns of the matrix A. N >= 0. */ 00072 00073 /* A (input/output) REAL array, dimension (LDA,N) */ 00074 /* On entry, the m by n matrix to be factored. */ 00075 /* On exit, the factors L and U from the factorization */ 00076 /* A = P*L*U; the unit diagonal elements of L are not stored. */ 00077 00078 /* LDA (input) INTEGER */ 00079 /* The leading dimension of the array A. LDA >= max(1,M). */ 00080 00081 /* IPIV (output) INTEGER array, dimension (min(M,N)) */ 00082 /* The pivot indices; for 1 <= i <= min(M,N), row i of the */ 00083 /* matrix was interchanged with row IPIV(i). */ 00084 00085 /* INFO (output) INTEGER */ 00086 /* = 0: successful exit */ 00087 /* < 0: if INFO = -k, the k-th argument had an illegal value */ 00088 /* > 0: if INFO = k, U(k,k) is exactly zero. The factorization */ 00089 /* has been completed, but the factor U is exactly */ 00090 /* singular, and division by zero will occur if it is used */ 00091 /* to solve a system of equations. */ 00092 00093 /* ===================================================================== */ 00094 00095 /* .. Parameters .. */ 00096 /* .. */ 00097 /* .. Local Scalars .. */ 00098 /* .. */ 00099 /* .. External Functions .. */ 00100 /* .. */ 00101 /* .. External Subroutines .. */ 00102 /* .. */ 00103 /* .. Intrinsic Functions .. */ 00104 /* .. */ 00105 /* .. Executable Statements .. */ 00106 00107 /* Test the input parameters. */ 00108 00109 /* Parameter adjustments */ 00110 a_dim1 = *lda; 00111 a_offset = 1 + a_dim1; 00112 a -= a_offset; 00113 --ipiv; 00114 00115 /* Function Body */ 00116 *info = 0; 00117 if (*m < 0) { 00118 *info = -1; 00119 } else if (*n < 0) { 00120 *info = -2; 00121 } else if (*lda < max(1,*m)) { 00122 *info = -4; 00123 } 00124 if (*info != 0) { 00125 i__1 = -(*info); 00126 xerbla_("SGETF2", &i__1); 00127 return 0; 00128 } 00129 00130 /* Quick return if possible */ 00131 00132 if (*m == 0 || *n == 0) { 00133 return 0; 00134 } 00135 00136 /* Compute machine safe minimum */ 00137 00138 sfmin = slamch_("S"); 00139 00140 i__1 = min(*m,*n); 00141 for (j = 1; j <= i__1; ++j) { 00142 00143 /* Find pivot and test for singularity. */ 00144 00145 i__2 = *m - j + 1; 00146 jp = j - 1 + isamax_(&i__2, &a[j + j * a_dim1], &c__1); 00147 ipiv[j] = jp; 00148 if (a[jp + j * a_dim1] != 0.f) { 00149 00150 /* Apply the interchange to columns 1:N. */ 00151 00152 if (jp != j) { 00153 sswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda); 00154 } 00155 00156 /* Compute elements J+1:M of J-th column. */ 00157 00158 if (j < *m) { 00159 if ((r__1 = a[j + j * a_dim1], dabs(r__1)) >= sfmin) { 00160 i__2 = *m - j; 00161 r__1 = 1.f / a[j + j * a_dim1]; 00162 sscal_(&i__2, &r__1, &a[j + 1 + j * a_dim1], &c__1); 00163 } else { 00164 i__2 = *m - j; 00165 for (i__ = 1; i__ <= i__2; ++i__) { 00166 a[j + i__ + j * a_dim1] /= a[j + j * a_dim1]; 00167 /* L20: */ 00168 } 00169 } 00170 } 00171 00172 } else if (*info == 0) { 00173 00174 *info = j; 00175 } 00176 00177 if (j < min(*m,*n)) { 00178 00179 /* Update trailing submatrix. */ 00180 00181 i__2 = *m - j; 00182 i__3 = *n - j; 00183 sger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + ( 00184 j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda); 00185 } 00186 /* L10: */ 00187 } 00188 return 0; 00189 00190 /* End of SGETF2 */ 00191 00192 } /* sgetf2_ */