00001 /* sget04.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int sget04_(integer *n, integer *nrhs, real *x, integer *ldx, 00021 real *xact, integer *ldxact, real *rcond, real *resid) 00022 { 00023 /* System generated locals */ 00024 integer x_dim1, x_offset, xact_dim1, xact_offset, i__1, i__2; 00025 real r__1, r__2, r__3; 00026 00027 /* Local variables */ 00028 integer i__, j, ix; 00029 real eps, xnorm, diffnm; 00030 extern doublereal slamch_(char *); 00031 extern integer isamax_(integer *, real *, integer *); 00032 00033 00034 /* -- LAPACK test routine (version 3.1) -- */ 00035 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00036 /* November 2006 */ 00037 00038 /* .. Scalar Arguments .. */ 00039 /* .. */ 00040 /* .. Array Arguments .. */ 00041 /* .. */ 00042 00043 /* Purpose */ 00044 /* ======= */ 00045 00046 /* SGET04 computes the difference between a computed solution and the */ 00047 /* true solution to a system of linear equations. */ 00048 00049 /* RESID = ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ), */ 00050 /* where RCOND is the reciprocal of the condition number and EPS is the */ 00051 /* machine epsilon. */ 00052 00053 /* Arguments */ 00054 /* ========= */ 00055 00056 /* N (input) INTEGER */ 00057 /* The number of rows of the matrices X and XACT. N >= 0. */ 00058 00059 /* NRHS (input) INTEGER */ 00060 /* The number of columns of the matrices X and XACT. NRHS >= 0. */ 00061 00062 /* X (input) REAL array, dimension (LDX,NRHS) */ 00063 /* The computed solution vectors. Each vector is stored as a */ 00064 /* column of the matrix X. */ 00065 00066 /* LDX (input) INTEGER */ 00067 /* The leading dimension of the array X. LDX >= max(1,N). */ 00068 00069 /* XACT (input) REAL array, dimension( LDX, NRHS ) */ 00070 /* The exact solution vectors. Each vector is stored as a */ 00071 /* column of the matrix XACT. */ 00072 00073 /* LDXACT (input) INTEGER */ 00074 /* The leading dimension of the array XACT. LDXACT >= max(1,N). */ 00075 00076 /* RCOND (input) REAL */ 00077 /* The reciprocal of the condition number of the coefficient */ 00078 /* matrix in the system of equations. */ 00079 00080 /* RESID (output) REAL */ 00081 /* The maximum over the NRHS solution vectors of */ 00082 /* ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ) */ 00083 00084 /* ===================================================================== */ 00085 00086 /* .. Parameters .. */ 00087 /* .. */ 00088 /* .. Local Scalars .. */ 00089 /* .. */ 00090 /* .. External Functions .. */ 00091 /* .. */ 00092 /* .. Intrinsic Functions .. */ 00093 /* .. */ 00094 /* .. Executable Statements .. */ 00095 00096 /* Quick exit if N = 0 or NRHS = 0. */ 00097 00098 /* Parameter adjustments */ 00099 x_dim1 = *ldx; 00100 x_offset = 1 + x_dim1; 00101 x -= x_offset; 00102 xact_dim1 = *ldxact; 00103 xact_offset = 1 + xact_dim1; 00104 xact -= xact_offset; 00105 00106 /* Function Body */ 00107 if (*n <= 0 || *nrhs <= 0) { 00108 *resid = 0.f; 00109 return 0; 00110 } 00111 00112 /* Exit with RESID = 1/EPS if RCOND is invalid. */ 00113 00114 eps = slamch_("Epsilon"); 00115 if (*rcond < 0.f) { 00116 *resid = 1.f / eps; 00117 return 0; 00118 } 00119 00120 /* Compute the maximum of */ 00121 /* norm(X - XACT) / ( norm(XACT) * EPS ) */ 00122 /* over all the vectors X and XACT . */ 00123 00124 *resid = 0.f; 00125 i__1 = *nrhs; 00126 for (j = 1; j <= i__1; ++j) { 00127 ix = isamax_(n, &xact[j * xact_dim1 + 1], &c__1); 00128 xnorm = (r__1 = xact[ix + j * xact_dim1], dabs(r__1)); 00129 diffnm = 0.f; 00130 i__2 = *n; 00131 for (i__ = 1; i__ <= i__2; ++i__) { 00132 /* Computing MAX */ 00133 r__2 = diffnm, r__3 = (r__1 = x[i__ + j * x_dim1] - xact[i__ + j * 00134 xact_dim1], dabs(r__1)); 00135 diffnm = dmax(r__2,r__3); 00136 /* L10: */ 00137 } 00138 if (xnorm <= 0.f) { 00139 if (diffnm > 0.f) { 00140 *resid = 1.f / eps; 00141 } 00142 } else { 00143 /* Computing MAX */ 00144 r__1 = *resid, r__2 = diffnm / xnorm * *rcond; 00145 *resid = dmax(r__1,r__2); 00146 } 00147 /* L20: */ 00148 } 00149 if (*resid * eps < 1.f) { 00150 *resid /= eps; 00151 } 00152 00153 return 0; 00154 00155 /* End of SGET04 */ 00156 00157 } /* sget04_ */