00001 /* sgesv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int sgesv_(integer *n, integer *nrhs, real *a, integer *lda, 00017 integer *ipiv, real *b, integer *ldb, integer *info) 00018 { 00019 /* System generated locals */ 00020 integer a_dim1, a_offset, b_dim1, b_offset, i__1; 00021 00022 /* Local variables */ 00023 extern /* Subroutine */ int xerbla_(char *, integer *), sgetrf_( 00024 integer *, integer *, real *, integer *, integer *, integer *), 00025 sgetrs_(char *, integer *, integer *, real *, integer *, integer * 00026 , real *, integer *, integer *); 00027 00028 00029 /* -- LAPACK driver routine (version 3.2) -- */ 00030 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00031 /* November 2006 */ 00032 00033 /* .. Scalar Arguments .. */ 00034 /* .. */ 00035 /* .. Array Arguments .. */ 00036 /* .. */ 00037 00038 /* Purpose */ 00039 /* ======= */ 00040 00041 /* SGESV computes the solution to a real system of linear equations */ 00042 /* A * X = B, */ 00043 /* where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */ 00044 00045 /* The LU decomposition with partial pivoting and row interchanges is */ 00046 /* used to factor A as */ 00047 /* A = P * L * U, */ 00048 /* where P is a permutation matrix, L is unit lower triangular, and U is */ 00049 /* upper triangular. The factored form of A is then used to solve the */ 00050 /* system of equations A * X = B. */ 00051 00052 /* Arguments */ 00053 /* ========= */ 00054 00055 /* N (input) INTEGER */ 00056 /* The number of linear equations, i.e., the order of the */ 00057 /* matrix A. N >= 0. */ 00058 00059 /* NRHS (input) INTEGER */ 00060 /* The number of right hand sides, i.e., the number of columns */ 00061 /* of the matrix B. NRHS >= 0. */ 00062 00063 /* A (input/output) REAL array, dimension (LDA,N) */ 00064 /* On entry, the N-by-N coefficient matrix A. */ 00065 /* On exit, the factors L and U from the factorization */ 00066 /* A = P*L*U; the unit diagonal elements of L are not stored. */ 00067 00068 /* LDA (input) INTEGER */ 00069 /* The leading dimension of the array A. LDA >= max(1,N). */ 00070 00071 /* IPIV (output) INTEGER array, dimension (N) */ 00072 /* The pivot indices that define the permutation matrix P; */ 00073 /* row i of the matrix was interchanged with row IPIV(i). */ 00074 00075 /* B (input/output) REAL array, dimension (LDB,NRHS) */ 00076 /* On entry, the N-by-NRHS matrix of right hand side matrix B. */ 00077 /* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ 00078 00079 /* LDB (input) INTEGER */ 00080 /* The leading dimension of the array B. LDB >= max(1,N). */ 00081 00082 /* INFO (output) INTEGER */ 00083 /* = 0: successful exit */ 00084 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00085 /* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ 00086 /* has been completed, but the factor U is exactly */ 00087 /* singular, so the solution could not be computed. */ 00088 00089 /* ===================================================================== */ 00090 00091 /* .. External Subroutines .. */ 00092 /* .. */ 00093 /* .. Intrinsic Functions .. */ 00094 /* .. */ 00095 /* .. Executable Statements .. */ 00096 00097 /* Test the input parameters. */ 00098 00099 /* Parameter adjustments */ 00100 a_dim1 = *lda; 00101 a_offset = 1 + a_dim1; 00102 a -= a_offset; 00103 --ipiv; 00104 b_dim1 = *ldb; 00105 b_offset = 1 + b_dim1; 00106 b -= b_offset; 00107 00108 /* Function Body */ 00109 *info = 0; 00110 if (*n < 0) { 00111 *info = -1; 00112 } else if (*nrhs < 0) { 00113 *info = -2; 00114 } else if (*lda < max(1,*n)) { 00115 *info = -4; 00116 } else if (*ldb < max(1,*n)) { 00117 *info = -7; 00118 } 00119 if (*info != 0) { 00120 i__1 = -(*info); 00121 xerbla_("SGESV ", &i__1); 00122 return 0; 00123 } 00124 00125 /* Compute the LU factorization of A. */ 00126 00127 sgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info); 00128 if (*info == 0) { 00129 00130 /* Solve the system A*X = B, overwriting B with X. */ 00131 00132 sgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[ 00133 b_offset], ldb, info); 00134 } 00135 return 0; 00136 00137 /* End of SGESV */ 00138 00139 } /* sgesv_ */