sgeqrf.c
Go to the documentation of this file.
00001 /* sgeqrf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static integer c_n1 = -1;
00020 static integer c__3 = 3;
00021 static integer c__2 = 2;
00022 
00023 /* Subroutine */ int sgeqrf_(integer *m, integer *n, real *a, integer *lda, 
00024         real *tau, real *work, integer *lwork, integer *info)
00025 {
00026     /* System generated locals */
00027     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
00028 
00029     /* Local variables */
00030     integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
00031     extern /* Subroutine */ int sgeqr2_(integer *, integer *, real *, integer 
00032             *, real *, real *, integer *), slarfb_(char *, char *, char *, 
00033             char *, integer *, integer *, integer *, real *, integer *, real *
00034 , integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *);
00035     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
00036             integer *, integer *);
00037     extern /* Subroutine */ int slarft_(char *, char *, integer *, integer *, 
00038             real *, integer *, real *, real *, integer *);
00039     integer ldwork, lwkopt;
00040     logical lquery;
00041 
00042 
00043 /*  -- LAPACK routine (version 3.2) -- */
00044 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00045 /*     November 2006 */
00046 
00047 /*     .. Scalar Arguments .. */
00048 /*     .. */
00049 /*     .. Array Arguments .. */
00050 /*     .. */
00051 
00052 /*  Purpose */
00053 /*  ======= */
00054 
00055 /*  SGEQRF computes a QR factorization of a real M-by-N matrix A: */
00056 /*  A = Q * R. */
00057 
00058 /*  Arguments */
00059 /*  ========= */
00060 
00061 /*  M       (input) INTEGER */
00062 /*          The number of rows of the matrix A.  M >= 0. */
00063 
00064 /*  N       (input) INTEGER */
00065 /*          The number of columns of the matrix A.  N >= 0. */
00066 
00067 /*  A       (input/output) REAL array, dimension (LDA,N) */
00068 /*          On entry, the M-by-N matrix A. */
00069 /*          On exit, the elements on and above the diagonal of the array */
00070 /*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is */
00071 /*          upper triangular if m >= n); the elements below the diagonal, */
00072 /*          with the array TAU, represent the orthogonal matrix Q as a */
00073 /*          product of min(m,n) elementary reflectors (see Further */
00074 /*          Details). */
00075 
00076 /*  LDA     (input) INTEGER */
00077 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00078 
00079 /*  TAU     (output) REAL array, dimension (min(M,N)) */
00080 /*          The scalar factors of the elementary reflectors (see Further */
00081 /*          Details). */
00082 
00083 /*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
00084 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00085 
00086 /*  LWORK   (input) INTEGER */
00087 /*          The dimension of the array WORK.  LWORK >= max(1,N). */
00088 /*          For optimum performance LWORK >= N*NB, where NB is */
00089 /*          the optimal blocksize. */
00090 
00091 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00092 /*          only calculates the optimal size of the WORK array, returns */
00093 /*          this value as the first entry of the WORK array, and no error */
00094 /*          message related to LWORK is issued by XERBLA. */
00095 
00096 /*  INFO    (output) INTEGER */
00097 /*          = 0:  successful exit */
00098 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00099 
00100 /*  Further Details */
00101 /*  =============== */
00102 
00103 /*  The matrix Q is represented as a product of elementary reflectors */
00104 
00105 /*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
00106 
00107 /*  Each H(i) has the form */
00108 
00109 /*     H(i) = I - tau * v * v' */
00110 
00111 /*  where tau is a real scalar, and v is a real vector with */
00112 /*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
00113 /*  and tau in TAU(i). */
00114 
00115 /*  ===================================================================== */
00116 
00117 /*     .. Local Scalars .. */
00118 /*     .. */
00119 /*     .. External Subroutines .. */
00120 /*     .. */
00121 /*     .. Intrinsic Functions .. */
00122 /*     .. */
00123 /*     .. External Functions .. */
00124 /*     .. */
00125 /*     .. Executable Statements .. */
00126 
00127 /*     Test the input arguments */
00128 
00129     /* Parameter adjustments */
00130     a_dim1 = *lda;
00131     a_offset = 1 + a_dim1;
00132     a -= a_offset;
00133     --tau;
00134     --work;
00135 
00136     /* Function Body */
00137     *info = 0;
00138     nb = ilaenv_(&c__1, "SGEQRF", " ", m, n, &c_n1, &c_n1);
00139     lwkopt = *n * nb;
00140     work[1] = (real) lwkopt;
00141     lquery = *lwork == -1;
00142     if (*m < 0) {
00143         *info = -1;
00144     } else if (*n < 0) {
00145         *info = -2;
00146     } else if (*lda < max(1,*m)) {
00147         *info = -4;
00148     } else if (*lwork < max(1,*n) && ! lquery) {
00149         *info = -7;
00150     }
00151     if (*info != 0) {
00152         i__1 = -(*info);
00153         xerbla_("SGEQRF", &i__1);
00154         return 0;
00155     } else if (lquery) {
00156         return 0;
00157     }
00158 
00159 /*     Quick return if possible */
00160 
00161     k = min(*m,*n);
00162     if (k == 0) {
00163         work[1] = 1.f;
00164         return 0;
00165     }
00166 
00167     nbmin = 2;
00168     nx = 0;
00169     iws = *n;
00170     if (nb > 1 && nb < k) {
00171 
00172 /*        Determine when to cross over from blocked to unblocked code. */
00173 
00174 /* Computing MAX */
00175         i__1 = 0, i__2 = ilaenv_(&c__3, "SGEQRF", " ", m, n, &c_n1, &c_n1);
00176         nx = max(i__1,i__2);
00177         if (nx < k) {
00178 
00179 /*           Determine if workspace is large enough for blocked code. */
00180 
00181             ldwork = *n;
00182             iws = ldwork * nb;
00183             if (*lwork < iws) {
00184 
00185 /*              Not enough workspace to use optimal NB:  reduce NB and */
00186 /*              determine the minimum value of NB. */
00187 
00188                 nb = *lwork / ldwork;
00189 /* Computing MAX */
00190                 i__1 = 2, i__2 = ilaenv_(&c__2, "SGEQRF", " ", m, n, &c_n1, &
00191                         c_n1);
00192                 nbmin = max(i__1,i__2);
00193             }
00194         }
00195     }
00196 
00197     if (nb >= nbmin && nb < k && nx < k) {
00198 
00199 /*        Use blocked code initially */
00200 
00201         i__1 = k - nx;
00202         i__2 = nb;
00203         for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
00204 /* Computing MIN */
00205             i__3 = k - i__ + 1;
00206             ib = min(i__3,nb);
00207 
00208 /*           Compute the QR factorization of the current block */
00209 /*           A(i:m,i:i+ib-1) */
00210 
00211             i__3 = *m - i__ + 1;
00212             sgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
00213                     1], &iinfo);
00214             if (i__ + ib <= *n) {
00215 
00216 /*              Form the triangular factor of the block reflector */
00217 /*              H = H(i) H(i+1) . . . H(i+ib-1) */
00218 
00219                 i__3 = *m - i__ + 1;
00220                 slarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ * 
00221                         a_dim1], lda, &tau[i__], &work[1], &ldwork);
00222 
00223 /*              Apply H' to A(i:m,i+ib:n) from the left */
00224 
00225                 i__3 = *m - i__ + 1;
00226                 i__4 = *n - i__ - ib + 1;
00227                 slarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
00228                         i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
00229                         ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &work[ib 
00230                         + 1], &ldwork);
00231             }
00232 /* L10: */
00233         }
00234     } else {
00235         i__ = 1;
00236     }
00237 
00238 /*     Use unblocked code to factor the last or only block. */
00239 
00240     if (i__ <= k) {
00241         i__2 = *m - i__ + 1;
00242         i__1 = *n - i__ + 1;
00243         sgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
00244 , &iinfo);
00245     }
00246 
00247     work[1] = (real) iws;
00248     return 0;
00249 
00250 /*     End of SGEQRF */
00251 
00252 } /* sgeqrf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:06