00001 /* sgelqs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static real c_b7 = 1.f; 00019 static real c_b9 = 0.f; 00020 00021 /* Subroutine */ int sgelqs_(integer *m, integer *n, integer *nrhs, real *a, 00022 integer *lda, real *tau, real *b, integer *ldb, real *work, integer * 00023 lwork, integer *info) 00024 { 00025 /* System generated locals */ 00026 integer a_dim1, a_offset, b_dim1, b_offset, i__1; 00027 00028 /* Local variables */ 00029 extern /* Subroutine */ int strsm_(char *, char *, char *, char *, 00030 integer *, integer *, real *, real *, integer *, real *, integer * 00031 ), xerbla_(char *, integer *), slaset_(char *, integer *, integer *, real *, real *, 00032 real *, integer *), sormlq_(char *, char *, integer *, 00033 integer *, integer *, real *, integer *, real *, real *, integer * 00034 , real *, integer *, integer *); 00035 00036 00037 /* -- LAPACK routine (version 3.1) -- */ 00038 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00039 /* November 2006 */ 00040 00041 /* .. Scalar Arguments .. */ 00042 /* .. */ 00043 /* .. Array Arguments .. */ 00044 /* .. */ 00045 00046 /* Purpose */ 00047 /* ======= */ 00048 00049 /* Compute a minimum-norm solution */ 00050 /* min || A*X - B || */ 00051 /* using the LQ factorization */ 00052 /* A = L*Q */ 00053 /* computed by SGELQF. */ 00054 00055 /* Arguments */ 00056 /* ========= */ 00057 00058 /* M (input) INTEGER */ 00059 /* The number of rows of the matrix A. M >= 0. */ 00060 00061 /* N (input) INTEGER */ 00062 /* The number of columns of the matrix A. N >= M >= 0. */ 00063 00064 /* NRHS (input) INTEGER */ 00065 /* The number of columns of B. NRHS >= 0. */ 00066 00067 /* A (input) REAL array, dimension (LDA,N) */ 00068 /* Details of the LQ factorization of the original matrix A as */ 00069 /* returned by SGELQF. */ 00070 00071 /* LDA (input) INTEGER */ 00072 /* The leading dimension of the array A. LDA >= M. */ 00073 00074 /* TAU (input) REAL array, dimension (M) */ 00075 /* Details of the orthogonal matrix Q. */ 00076 00077 /* B (input/output) REAL array, dimension (LDB,NRHS) */ 00078 /* On entry, the m-by-nrhs right hand side matrix B. */ 00079 /* On exit, the n-by-nrhs solution matrix X. */ 00080 00081 /* LDB (input) INTEGER */ 00082 /* The leading dimension of the array B. LDB >= N. */ 00083 00084 /* WORK (workspace) REAL array, dimension (LWORK) */ 00085 00086 /* LWORK (input) INTEGER */ 00087 /* The length of the array WORK. LWORK must be at least NRHS, */ 00088 /* and should be at least NRHS*NB, where NB is the block size */ 00089 /* for this environment. */ 00090 00091 /* INFO (output) INTEGER */ 00092 /* = 0: successful exit */ 00093 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00094 00095 /* ===================================================================== */ 00096 00097 /* .. Parameters .. */ 00098 /* .. */ 00099 /* .. External Subroutines .. */ 00100 /* .. */ 00101 /* .. Intrinsic Functions .. */ 00102 /* .. */ 00103 /* .. Executable Statements .. */ 00104 00105 /* Test the input parameters. */ 00106 00107 /* Parameter adjustments */ 00108 a_dim1 = *lda; 00109 a_offset = 1 + a_dim1; 00110 a -= a_offset; 00111 --tau; 00112 b_dim1 = *ldb; 00113 b_offset = 1 + b_dim1; 00114 b -= b_offset; 00115 --work; 00116 00117 /* Function Body */ 00118 *info = 0; 00119 if (*m < 0) { 00120 *info = -1; 00121 } else if (*n < 0 || *m > *n) { 00122 *info = -2; 00123 } else if (*nrhs < 0) { 00124 *info = -3; 00125 } else if (*lda < max(1,*m)) { 00126 *info = -5; 00127 } else if (*ldb < max(1,*n)) { 00128 *info = -8; 00129 } else if (*lwork < 1 || *lwork < *nrhs && *m > 0 && *n > 0) { 00130 *info = -10; 00131 } 00132 if (*info != 0) { 00133 i__1 = -(*info); 00134 xerbla_("SGELQS", &i__1); 00135 return 0; 00136 } 00137 00138 /* Quick return if possible */ 00139 00140 if (*n == 0 || *nrhs == 0 || *m == 0) { 00141 return 0; 00142 } 00143 00144 /* Solve L*X = B(1:m,:) */ 00145 00146 strsm_("Left", "Lower", "No transpose", "Non-unit", m, nrhs, &c_b7, &a[ 00147 a_offset], lda, &b[b_offset], ldb); 00148 00149 /* Set B(m+1:n,:) to zero */ 00150 00151 if (*m < *n) { 00152 i__1 = *n - *m; 00153 slaset_("Full", &i__1, nrhs, &c_b9, &c_b9, &b[*m + 1 + b_dim1], ldb); 00154 } 00155 00156 /* B := Q' * B */ 00157 00158 sormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &tau[1], &b[ 00159 b_offset], ldb, &work[1], lwork, info); 00160 00161 return 0; 00162 00163 /* End of SGELQS */ 00164 00165 } /* sgelqs_ */