sgeequ.c
Go to the documentation of this file.
00001 /* sgeequ.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int sgeequ_(integer *m, integer *n, real *a, integer *lda, 
00017         real *r__, real *c__, real *rowcnd, real *colcnd, real *amax, integer 
00018         *info)
00019 {
00020     /* System generated locals */
00021     integer a_dim1, a_offset, i__1, i__2;
00022     real r__1, r__2, r__3;
00023 
00024     /* Local variables */
00025     integer i__, j;
00026     real rcmin, rcmax;
00027     extern doublereal slamch_(char *);
00028     extern /* Subroutine */ int xerbla_(char *, integer *);
00029     real bignum, smlnum;
00030 
00031 
00032 /*  -- LAPACK routine (version 3.2) -- */
00033 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00034 /*     November 2006 */
00035 
00036 /*     .. Scalar Arguments .. */
00037 /*     .. */
00038 /*     .. Array Arguments .. */
00039 /*     .. */
00040 
00041 /*  Purpose */
00042 /*  ======= */
00043 
00044 /*  SGEEQU computes row and column scalings intended to equilibrate an */
00045 /*  M-by-N matrix A and reduce its condition number.  R returns the row */
00046 /*  scale factors and C the column scale factors, chosen to try to make */
00047 /*  the largest element in each row and column of the matrix B with */
00048 /*  elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
00049 
00050 /*  R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
00051 /*  number and BIGNUM = largest safe number.  Use of these scaling */
00052 /*  factors is not guaranteed to reduce the condition number of A but */
00053 /*  works well in practice. */
00054 
00055 /*  Arguments */
00056 /*  ========= */
00057 
00058 /*  M       (input) INTEGER */
00059 /*          The number of rows of the matrix A.  M >= 0. */
00060 
00061 /*  N       (input) INTEGER */
00062 /*          The number of columns of the matrix A.  N >= 0. */
00063 
00064 /*  A       (input) REAL array, dimension (LDA,N) */
00065 /*          The M-by-N matrix whose equilibration factors are */
00066 /*          to be computed. */
00067 
00068 /*  LDA     (input) INTEGER */
00069 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00070 
00071 /*  R       (output) REAL array, dimension (M) */
00072 /*          If INFO = 0 or INFO > M, R contains the row scale factors */
00073 /*          for A. */
00074 
00075 /*  C       (output) REAL array, dimension (N) */
00076 /*          If INFO = 0,  C contains the column scale factors for A. */
00077 
00078 /*  ROWCND  (output) REAL */
00079 /*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
00080 /*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and */
00081 /*          AMAX is neither too large nor too small, it is not worth */
00082 /*          scaling by R. */
00083 
00084 /*  COLCND  (output) REAL */
00085 /*          If INFO = 0, COLCND contains the ratio of the smallest */
00086 /*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not */
00087 /*          worth scaling by C. */
00088 
00089 /*  AMAX    (output) REAL */
00090 /*          Absolute value of largest matrix element.  If AMAX is very */
00091 /*          close to overflow or very close to underflow, the matrix */
00092 /*          should be scaled. */
00093 
00094 /*  INFO    (output) INTEGER */
00095 /*          = 0:  successful exit */
00096 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00097 /*          > 0:  if INFO = i,  and i is */
00098 /*                <= M:  the i-th row of A is exactly zero */
00099 /*                >  M:  the (i-M)-th column of A is exactly zero */
00100 
00101 /*  ===================================================================== */
00102 
00103 /*     .. Parameters .. */
00104 /*     .. */
00105 /*     .. Local Scalars .. */
00106 /*     .. */
00107 /*     .. External Functions .. */
00108 /*     .. */
00109 /*     .. External Subroutines .. */
00110 /*     .. */
00111 /*     .. Intrinsic Functions .. */
00112 /*     .. */
00113 /*     .. Executable Statements .. */
00114 
00115 /*     Test the input parameters. */
00116 
00117     /* Parameter adjustments */
00118     a_dim1 = *lda;
00119     a_offset = 1 + a_dim1;
00120     a -= a_offset;
00121     --r__;
00122     --c__;
00123 
00124     /* Function Body */
00125     *info = 0;
00126     if (*m < 0) {
00127         *info = -1;
00128     } else if (*n < 0) {
00129         *info = -2;
00130     } else if (*lda < max(1,*m)) {
00131         *info = -4;
00132     }
00133     if (*info != 0) {
00134         i__1 = -(*info);
00135         xerbla_("SGEEQU", &i__1);
00136         return 0;
00137     }
00138 
00139 /*     Quick return if possible */
00140 
00141     if (*m == 0 || *n == 0) {
00142         *rowcnd = 1.f;
00143         *colcnd = 1.f;
00144         *amax = 0.f;
00145         return 0;
00146     }
00147 
00148 /*     Get machine constants. */
00149 
00150     smlnum = slamch_("S");
00151     bignum = 1.f / smlnum;
00152 
00153 /*     Compute row scale factors. */
00154 
00155     i__1 = *m;
00156     for (i__ = 1; i__ <= i__1; ++i__) {
00157         r__[i__] = 0.f;
00158 /* L10: */
00159     }
00160 
00161 /*     Find the maximum element in each row. */
00162 
00163     i__1 = *n;
00164     for (j = 1; j <= i__1; ++j) {
00165         i__2 = *m;
00166         for (i__ = 1; i__ <= i__2; ++i__) {
00167 /* Computing MAX */
00168             r__2 = r__[i__], r__3 = (r__1 = a[i__ + j * a_dim1], dabs(r__1));
00169             r__[i__] = dmax(r__2,r__3);
00170 /* L20: */
00171         }
00172 /* L30: */
00173     }
00174 
00175 /*     Find the maximum and minimum scale factors. */
00176 
00177     rcmin = bignum;
00178     rcmax = 0.f;
00179     i__1 = *m;
00180     for (i__ = 1; i__ <= i__1; ++i__) {
00181 /* Computing MAX */
00182         r__1 = rcmax, r__2 = r__[i__];
00183         rcmax = dmax(r__1,r__2);
00184 /* Computing MIN */
00185         r__1 = rcmin, r__2 = r__[i__];
00186         rcmin = dmin(r__1,r__2);
00187 /* L40: */
00188     }
00189     *amax = rcmax;
00190 
00191     if (rcmin == 0.f) {
00192 
00193 /*        Find the first zero scale factor and return an error code. */
00194 
00195         i__1 = *m;
00196         for (i__ = 1; i__ <= i__1; ++i__) {
00197             if (r__[i__] == 0.f) {
00198                 *info = i__;
00199                 return 0;
00200             }
00201 /* L50: */
00202         }
00203     } else {
00204 
00205 /*        Invert the scale factors. */
00206 
00207         i__1 = *m;
00208         for (i__ = 1; i__ <= i__1; ++i__) {
00209 /* Computing MIN */
00210 /* Computing MAX */
00211             r__2 = r__[i__];
00212             r__1 = dmax(r__2,smlnum);
00213             r__[i__] = 1.f / dmin(r__1,bignum);
00214 /* L60: */
00215         }
00216 
00217 /*        Compute ROWCND = min(R(I)) / max(R(I)) */
00218 
00219         *rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
00220     }
00221 
00222 /*     Compute column scale factors */
00223 
00224     i__1 = *n;
00225     for (j = 1; j <= i__1; ++j) {
00226         c__[j] = 0.f;
00227 /* L70: */
00228     }
00229 
00230 /*     Find the maximum element in each column, */
00231 /*     assuming the row scaling computed above. */
00232 
00233     i__1 = *n;
00234     for (j = 1; j <= i__1; ++j) {
00235         i__2 = *m;
00236         for (i__ = 1; i__ <= i__2; ++i__) {
00237 /* Computing MAX */
00238             r__2 = c__[j], r__3 = (r__1 = a[i__ + j * a_dim1], dabs(r__1)) * 
00239                     r__[i__];
00240             c__[j] = dmax(r__2,r__3);
00241 /* L80: */
00242         }
00243 /* L90: */
00244     }
00245 
00246 /*     Find the maximum and minimum scale factors. */
00247 
00248     rcmin = bignum;
00249     rcmax = 0.f;
00250     i__1 = *n;
00251     for (j = 1; j <= i__1; ++j) {
00252 /* Computing MIN */
00253         r__1 = rcmin, r__2 = c__[j];
00254         rcmin = dmin(r__1,r__2);
00255 /* Computing MAX */
00256         r__1 = rcmax, r__2 = c__[j];
00257         rcmax = dmax(r__1,r__2);
00258 /* L100: */
00259     }
00260 
00261     if (rcmin == 0.f) {
00262 
00263 /*        Find the first zero scale factor and return an error code. */
00264 
00265         i__1 = *n;
00266         for (j = 1; j <= i__1; ++j) {
00267             if (c__[j] == 0.f) {
00268                 *info = *m + j;
00269                 return 0;
00270             }
00271 /* L110: */
00272         }
00273     } else {
00274 
00275 /*        Invert the scale factors. */
00276 
00277         i__1 = *n;
00278         for (j = 1; j <= i__1; ++j) {
00279 /* Computing MIN */
00280 /* Computing MAX */
00281             r__2 = c__[j];
00282             r__1 = dmax(r__2,smlnum);
00283             c__[j] = 1.f / dmin(r__1,bignum);
00284 /* L120: */
00285         }
00286 
00287 /*        Compute COLCND = min(C(J)) / max(C(J)) */
00288 
00289         *colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
00290     }
00291 
00292     return 0;
00293 
00294 /*     End of SGEEQU */
00295 
00296 } /* sgeequ_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:06