00001 /* sgbequb.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int sgbequb_(integer *m, integer *n, integer *kl, integer * 00017 ku, real *ab, integer *ldab, real *r__, real *c__, real *rowcnd, real 00018 *colcnd, real *amax, integer *info) 00019 { 00020 /* System generated locals */ 00021 integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; 00022 real r__1, r__2, r__3; 00023 00024 /* Builtin functions */ 00025 double log(doublereal), pow_ri(real *, integer *); 00026 00027 /* Local variables */ 00028 integer i__, j, kd; 00029 real radix, rcmin, rcmax; 00030 extern doublereal slamch_(char *); 00031 extern /* Subroutine */ int xerbla_(char *, integer *); 00032 real bignum, logrdx, smlnum; 00033 00034 00035 /* -- LAPACK routine (version 3.2) -- */ 00036 /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ 00037 /* -- Jason Riedy of Univ. of California Berkeley. -- */ 00038 /* -- November 2008 -- */ 00039 00040 /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ 00041 /* -- Univ. of California Berkeley and NAG Ltd. -- */ 00042 00043 /* .. */ 00044 /* .. Scalar Arguments .. */ 00045 /* .. */ 00046 /* .. Array Arguments .. */ 00047 /* .. */ 00048 00049 /* Purpose */ 00050 /* ======= */ 00051 00052 /* SGBEQUB computes row and column scalings intended to equilibrate an */ 00053 /* M-by-N matrix A and reduce its condition number. R returns the row */ 00054 /* scale factors and C the column scale factors, chosen to try to make */ 00055 /* the largest element in each row and column of the matrix B with */ 00056 /* elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */ 00057 /* the radix. */ 00058 00059 /* R(i) and C(j) are restricted to be a power of the radix between */ 00060 /* SMLNUM = smallest safe number and BIGNUM = largest safe number. Use */ 00061 /* of these scaling factors is not guaranteed to reduce the condition */ 00062 /* number of A but works well in practice. */ 00063 00064 /* This routine differs from SGEEQU by restricting the scaling factors */ 00065 /* to a power of the radix. Baring over- and underflow, scaling by */ 00066 /* these factors introduces no additional rounding errors. However, the */ 00067 /* scaled entries' magnitured are no longer approximately 1 but lie */ 00068 /* between sqrt(radix) and 1/sqrt(radix). */ 00069 00070 /* Arguments */ 00071 /* ========= */ 00072 00073 /* M (input) INTEGER */ 00074 /* The number of rows of the matrix A. M >= 0. */ 00075 00076 /* N (input) INTEGER */ 00077 /* The number of columns of the matrix A. N >= 0. */ 00078 00079 /* KL (input) INTEGER */ 00080 /* The number of subdiagonals within the band of A. KL >= 0. */ 00081 00082 /* KU (input) INTEGER */ 00083 /* The number of superdiagonals within the band of A. KU >= 0. */ 00084 00085 /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ 00086 /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */ 00087 /* The j-th column of A is stored in the j-th column of the */ 00088 /* array AB as follows: */ 00089 /* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */ 00090 00091 /* LDAB (input) INTEGER */ 00092 /* The leading dimension of the array A. LDAB >= max(1,M). */ 00093 00094 /* R (output) REAL array, dimension (M) */ 00095 /* If INFO = 0 or INFO > M, R contains the row scale factors */ 00096 /* for A. */ 00097 00098 /* C (output) REAL array, dimension (N) */ 00099 /* If INFO = 0, C contains the column scale factors for A. */ 00100 00101 /* ROWCND (output) REAL */ 00102 /* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */ 00103 /* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */ 00104 /* AMAX is neither too large nor too small, it is not worth */ 00105 /* scaling by R. */ 00106 00107 /* COLCND (output) REAL */ 00108 /* If INFO = 0, COLCND contains the ratio of the smallest */ 00109 /* C(i) to the largest C(i). If COLCND >= 0.1, it is not */ 00110 /* worth scaling by C. */ 00111 00112 /* AMAX (output) REAL */ 00113 /* Absolute value of largest matrix element. If AMAX is very */ 00114 /* close to overflow or very close to underflow, the matrix */ 00115 /* should be scaled. */ 00116 00117 /* INFO (output) INTEGER */ 00118 /* = 0: successful exit */ 00119 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00120 /* > 0: if INFO = i, and i is */ 00121 /* <= M: the i-th row of A is exactly zero */ 00122 /* > M: the (i-M)-th column of A is exactly zero */ 00123 00124 /* ===================================================================== */ 00125 00126 /* .. Parameters .. */ 00127 /* .. */ 00128 /* .. Local Scalars .. */ 00129 /* .. */ 00130 /* .. External Functions .. */ 00131 /* .. */ 00132 /* .. External Subroutines .. */ 00133 /* .. */ 00134 /* .. Intrinsic Functions .. */ 00135 /* .. */ 00136 /* .. Executable Statements .. */ 00137 00138 /* Test the input parameters. */ 00139 00140 /* Parameter adjustments */ 00141 ab_dim1 = *ldab; 00142 ab_offset = 1 + ab_dim1; 00143 ab -= ab_offset; 00144 --r__; 00145 --c__; 00146 00147 /* Function Body */ 00148 *info = 0; 00149 if (*m < 0) { 00150 *info = -1; 00151 } else if (*n < 0) { 00152 *info = -2; 00153 } else if (*kl < 0) { 00154 *info = -3; 00155 } else if (*ku < 0) { 00156 *info = -4; 00157 } else if (*ldab < *kl + *ku + 1) { 00158 *info = -6; 00159 } 00160 if (*info != 0) { 00161 i__1 = -(*info); 00162 xerbla_("SGBEQUB", &i__1); 00163 return 0; 00164 } 00165 00166 /* Quick return if possible. */ 00167 00168 if (*m == 0 || *n == 0) { 00169 *rowcnd = 1.f; 00170 *colcnd = 1.f; 00171 *amax = 0.f; 00172 return 0; 00173 } 00174 00175 /* Get machine constants. Assume SMLNUM is a power of the radix. */ 00176 00177 smlnum = slamch_("S"); 00178 bignum = 1.f / smlnum; 00179 radix = slamch_("B"); 00180 logrdx = log(radix); 00181 00182 /* Compute row scale factors. */ 00183 00184 i__1 = *m; 00185 for (i__ = 1; i__ <= i__1; ++i__) { 00186 r__[i__] = 0.f; 00187 /* L10: */ 00188 } 00189 00190 /* Find the maximum element in each row. */ 00191 00192 kd = *ku + 1; 00193 i__1 = *n; 00194 for (j = 1; j <= i__1; ++j) { 00195 /* Computing MAX */ 00196 i__2 = j - *ku; 00197 /* Computing MIN */ 00198 i__4 = j + *kl; 00199 i__3 = min(i__4,*m); 00200 for (i__ = max(i__2,1); i__ <= i__3; ++i__) { 00201 /* Computing MAX */ 00202 r__2 = r__[i__], r__3 = (r__1 = ab[kd + i__ - j + j * ab_dim1], 00203 dabs(r__1)); 00204 r__[i__] = dmax(r__2,r__3); 00205 /* L20: */ 00206 } 00207 /* L30: */ 00208 } 00209 i__1 = *m; 00210 for (i__ = 1; i__ <= i__1; ++i__) { 00211 if (r__[i__] > 0.f) { 00212 i__3 = (integer) (log(r__[i__]) / logrdx); 00213 r__[i__] = pow_ri(&radix, &i__3); 00214 } 00215 } 00216 00217 /* Find the maximum and minimum scale factors. */ 00218 00219 rcmin = bignum; 00220 rcmax = 0.f; 00221 i__1 = *m; 00222 for (i__ = 1; i__ <= i__1; ++i__) { 00223 /* Computing MAX */ 00224 r__1 = rcmax, r__2 = r__[i__]; 00225 rcmax = dmax(r__1,r__2); 00226 /* Computing MIN */ 00227 r__1 = rcmin, r__2 = r__[i__]; 00228 rcmin = dmin(r__1,r__2); 00229 /* L40: */ 00230 } 00231 *amax = rcmax; 00232 00233 if (rcmin == 0.f) { 00234 00235 /* Find the first zero scale factor and return an error code. */ 00236 00237 i__1 = *m; 00238 for (i__ = 1; i__ <= i__1; ++i__) { 00239 if (r__[i__] == 0.f) { 00240 *info = i__; 00241 return 0; 00242 } 00243 /* L50: */ 00244 } 00245 } else { 00246 00247 /* Invert the scale factors. */ 00248 00249 i__1 = *m; 00250 for (i__ = 1; i__ <= i__1; ++i__) { 00251 /* Computing MIN */ 00252 /* Computing MAX */ 00253 r__2 = r__[i__]; 00254 r__1 = dmax(r__2,smlnum); 00255 r__[i__] = 1.f / dmin(r__1,bignum); 00256 /* L60: */ 00257 } 00258 00259 /* Compute ROWCND = min(R(I)) / max(R(I)). */ 00260 00261 *rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum); 00262 } 00263 00264 /* Compute column scale factors. */ 00265 00266 i__1 = *n; 00267 for (j = 1; j <= i__1; ++j) { 00268 c__[j] = 0.f; 00269 /* L70: */ 00270 } 00271 00272 /* Find the maximum element in each column, */ 00273 /* assuming the row scaling computed above. */ 00274 00275 i__1 = *n; 00276 for (j = 1; j <= i__1; ++j) { 00277 /* Computing MAX */ 00278 i__3 = j - *ku; 00279 /* Computing MIN */ 00280 i__4 = j + *kl; 00281 i__2 = min(i__4,*m); 00282 for (i__ = max(i__3,1); i__ <= i__2; ++i__) { 00283 /* Computing MAX */ 00284 r__2 = c__[j], r__3 = (r__1 = ab[kd + i__ - j + j * ab_dim1], 00285 dabs(r__1)) * r__[i__]; 00286 c__[j] = dmax(r__2,r__3); 00287 /* L80: */ 00288 } 00289 if (c__[j] > 0.f) { 00290 i__2 = (integer) (log(c__[j]) / logrdx); 00291 c__[j] = pow_ri(&radix, &i__2); 00292 } 00293 /* L90: */ 00294 } 00295 00296 /* Find the maximum and minimum scale factors. */ 00297 00298 rcmin = bignum; 00299 rcmax = 0.f; 00300 i__1 = *n; 00301 for (j = 1; j <= i__1; ++j) { 00302 /* Computing MIN */ 00303 r__1 = rcmin, r__2 = c__[j]; 00304 rcmin = dmin(r__1,r__2); 00305 /* Computing MAX */ 00306 r__1 = rcmax, r__2 = c__[j]; 00307 rcmax = dmax(r__1,r__2); 00308 /* L100: */ 00309 } 00310 00311 if (rcmin == 0.f) { 00312 00313 /* Find the first zero scale factor and return an error code. */ 00314 00315 i__1 = *n; 00316 for (j = 1; j <= i__1; ++j) { 00317 if (c__[j] == 0.f) { 00318 *info = *m + j; 00319 return 0; 00320 } 00321 /* L110: */ 00322 } 00323 } else { 00324 00325 /* Invert the scale factors. */ 00326 00327 i__1 = *n; 00328 for (j = 1; j <= i__1; ++j) { 00329 /* Computing MIN */ 00330 /* Computing MAX */ 00331 r__2 = c__[j]; 00332 r__1 = dmax(r__2,smlnum); 00333 c__[j] = 1.f / dmin(r__1,bignum); 00334 /* L120: */ 00335 } 00336 00337 /* Compute COLCND = min(C(J)) / max(C(J)). */ 00338 00339 *colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum); 00340 } 00341 00342 return 0; 00343 00344 /* End of SGBEQUB */ 00345 00346 } /* sgbequb_ */