sdrves.c
Go to the documentation of this file.
00001 /* sdrves.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     integer selopt, seldim;
00020     logical selval[20];
00021     real selwr[20], selwi[20];
00022 } sslct_;
00023 
00024 #define sslct_1 sslct_
00025 
00026 /* Table of constant values */
00027 
00028 static real c_b17 = 0.f;
00029 static integer c__0 = 0;
00030 static real c_b31 = 1.f;
00031 static integer c__4 = 4;
00032 static integer c__6 = 6;
00033 static integer c__1 = 1;
00034 static integer c__2 = 2;
00035 
00036 /* Subroutine */ int sdrves_(integer *nsizes, integer *nn, integer *ntypes, 
00037         logical *dotype, integer *iseed, real *thresh, integer *nounit, real *
00038         a, integer *lda, real *h__, real *ht, real *wr, real *wi, real *wrt, 
00039         real *wit, real *vs, integer *ldvs, real *result, real *work, integer 
00040         *nwork, integer *iwork, logical *bwork, integer *info)
00041 {
00042     /* Initialized data */
00043 
00044     static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
00045     static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
00046     static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
00047     static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };
00048 
00049     /* Format strings */
00050     static char fmt_9992[] = "(\002 SDRVES: \002,a,\002 returned INFO=\002,i"
00051             "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
00052             "(\002,3(i5,\002,\002),i5,\002)\002)";
00053     static char fmt_9999[] = "(/1x,a3,\002 -- Real Schur Form Decomposition "
00054             "Driver\002,/\002 Matrix types (see SDRVES for details): \002)";
00055     static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
00056             "rix.             \002,\002           \002,\002  5=Diagonal: geom"
00057             "etr. spaced entries.\002,/\002  2=Identity matrix.              "
00058             "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
00059             "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
00060             " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
00061             "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
00062             "ll, evenly spaced.\002)";
00063     static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
00064             "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
00065             "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
00066             "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
00067             "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
00068             "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
00069             " 12=Well-cond., random complex \002,6x,\002   \002,\002 17=Ill-c"
00070             "ond., large rand. complx \002,/\002 13=Ill-condi\002,\002tioned,"
00071             " evenly spaced.     \002,\002 18=Ill-cond., small rand.\002,\002"
00072             " complx \002)";
00073     static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
00074             " \002,\002 21=Matrix \002,\002with small random entries.\002,"
00075             "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
00076     static char fmt_9995[] = "(\002 Tests performed with test threshold ="
00077             "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)"
00078             "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002  1/ulp"
00079             " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul"
00080             "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )"
00081             " (no sort) \002,/\002 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of"
00082             " T (no sort),\002,\002  1/ulp otherwise\002,/\002 5 = 0 if T sam"
00083             "e no matter if VS computed (no sort),\002,\002  1/ulp otherwis"
00084             "e\002,/\002 6 = 0 if WR, WI same no matter if VS computed (no so"
00085             "rt)\002,\002,  1/ulp otherwise\002)";
00086     static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002"
00087             ",\002  1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | "
00088             "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / "
00089             "( n ulp ) (sort) \002,/\002 10 = 0 if WR+sqrt(-1)*WI are eigenva"
00090             "lues of T (sort),\002,\002  1/ulp otherwise\002,/\002 11 = 0 if "
00091             "T same no matter if VS computed (sort),\002,\002  1/ulp otherwise"
00092             "\002,/\002 12 = 0 if WR, WI same no matter if VS computed (sort),"
00093             "\002,\002  1/ulp otherwise\002,/\002 13 = 0 if sorting succesful"
00094             ", 1/ulp otherwise\002,/)";
00095     static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
00096             "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
00097             "\002,g10.3)";
00098 
00099     /* System generated locals */
00100     integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, 
00101             vs_offset, i__1, i__2, i__3, i__4;
00102     real r__1, r__2, r__3, r__4;
00103 
00104     /* Builtin functions */
00105     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00106     double sqrt(doublereal);
00107     integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
00108     double r_sign(real *, real *);
00109 
00110     /* Local variables */
00111     integer i__, j, n;
00112     real res[2];
00113     integer iwk;
00114     real tmp, ulp, cond;
00115     integer jcol;
00116     char path[3];
00117     integer sdim, nmax;
00118     real unfl, ovfl;
00119     integer rsub;
00120     char sort[1];
00121     logical badnn;
00122     integer nfail, imode, iinfo;
00123     real conds;
00124     extern /* Subroutine */ int sgees_(char *, char *, L_fp, integer *, real *
00125 , integer *, integer *, real *, real *, real *, integer *, real *, 
00126              integer *, logical *, integer *);
00127     real anorm;
00128     extern /* Subroutine */ int shst01_(integer *, integer *, integer *, real 
00129             *, integer *, real *, integer *, real *, integer *, real *, 
00130             integer *, real *);
00131     integer jsize, nerrs, itype, jtype, ntest, lwork, isort;
00132     real rtulp;
00133     extern /* Subroutine */ int slabad_(real *, real *);
00134     char adumma[1*1];
00135     extern doublereal slamch_(char *);
00136     integer idumma[1], ioldsd[4];
00137     extern /* Subroutine */ int xerbla_(char *, integer *);
00138     integer knteig;
00139     extern /* Subroutine */ int slatme_(integer *, char *, integer *, real *, 
00140             integer *, real *, real *, char *, char *, char *, char *, real *, 
00141              integer *, real *, integer *, integer *, real *, real *, integer 
00142             *, real *, integer *), 
00143             slacpy_(char *, integer *, integer *, real *, integer *, real *, 
00144             integer *), slaset_(char *, integer *, integer *, real *, 
00145             real *, real *, integer *);
00146     extern logical sslect_(real *, real *);
00147     extern /* Subroutine */ int slatmr_(integer *, integer *, char *, integer 
00148             *, char *, real *, integer *, real *, real *, char *, char *, 
00149             real *, integer *, real *, real *, integer *, real *, char *, 
00150             integer *, integer *, integer *, real *, real *, char *, real *, 
00151             integer *, integer *, integer *);
00152     integer ntestf;
00153     extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer 
00154             *), slatms_(integer *, integer *, char *, integer *, char 
00155             *, real *, integer *, real *, real *, integer *, integer *, char *
00156 , real *, integer *, real *, integer *);
00157     real ulpinv;
00158     integer nnwork;
00159     real rtulpi;
00160     integer mtypes, ntestt;
00161 
00162     /* Fortran I/O blocks */
00163     static cilist io___32 = { 0, 0, 0, fmt_9992, 0 };
00164     static cilist io___39 = { 0, 0, 0, fmt_9992, 0 };
00165     static cilist io___44 = { 0, 0, 0, fmt_9992, 0 };
00166     static cilist io___48 = { 0, 0, 0, fmt_9999, 0 };
00167     static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
00168     static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
00169     static cilist io___51 = { 0, 0, 0, fmt_9996, 0 };
00170     static cilist io___52 = { 0, 0, 0, fmt_9995, 0 };
00171     static cilist io___53 = { 0, 0, 0, fmt_9994, 0 };
00172     static cilist io___54 = { 0, 0, 0, fmt_9993, 0 };
00173 
00174 
00175 
00176 /*  -- LAPACK test routine (version 3.1) -- */
00177 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00178 /*     November 2006 */
00179 
00180 /*     .. Scalar Arguments .. */
00181 /*     .. */
00182 /*     .. Array Arguments .. */
00183 /*     .. */
00184 
00185 /*  Purpose */
00186 /*  ======= */
00187 
00188 /*     SDRVES checks the nonsymmetric eigenvalue (Schur form) problem */
00189 /*     driver SGEES. */
00190 
00191 /*     When SDRVES is called, a number of matrix "sizes" ("n's") and a */
00192 /*     number of matrix "types" are specified.  For each size ("n") */
00193 /*     and each type of matrix, one matrix will be generated and used */
00194 /*     to test the nonsymmetric eigenroutines.  For each matrix, 13 */
00195 /*     tests will be performed: */
00196 
00197 /*     (1)     0 if T is in Schur form, 1/ulp otherwise */
00198 /*            (no sorting of eigenvalues) */
00199 
00200 /*     (2)     | A - VS T VS' | / ( n |A| ulp ) */
00201 
00202 /*       Here VS is the matrix of Schur eigenvectors, and T is in Schur */
00203 /*       form  (no sorting of eigenvalues). */
00204 
00205 /*     (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). */
00206 
00207 /*     (4)     0     if WR+sqrt(-1)*WI are eigenvalues of T */
00208 /*             1/ulp otherwise */
00209 /*             (no sorting of eigenvalues) */
00210 
00211 /*     (5)     0     if T(with VS) = T(without VS), */
00212 /*             1/ulp otherwise */
00213 /*             (no sorting of eigenvalues) */
00214 
00215 /*     (6)     0     if eigenvalues(with VS) = eigenvalues(without VS), */
00216 /*             1/ulp otherwise */
00217 /*             (no sorting of eigenvalues) */
00218 
00219 /*     (7)     0 if T is in Schur form, 1/ulp otherwise */
00220 /*             (with sorting of eigenvalues) */
00221 
00222 /*     (8)     | A - VS T VS' | / ( n |A| ulp ) */
00223 
00224 /*       Here VS is the matrix of Schur eigenvectors, and T is in Schur */
00225 /*       form  (with sorting of eigenvalues). */
00226 
00227 /*     (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). */
00228 
00229 /*     (10)    0     if WR+sqrt(-1)*WI are eigenvalues of T */
00230 /*             1/ulp otherwise */
00231 /*             (with sorting of eigenvalues) */
00232 
00233 /*     (11)    0     if T(with VS) = T(without VS), */
00234 /*             1/ulp otherwise */
00235 /*             (with sorting of eigenvalues) */
00236 
00237 /*     (12)    0     if eigenvalues(with VS) = eigenvalues(without VS), */
00238 /*             1/ulp otherwise */
00239 /*             (with sorting of eigenvalues) */
00240 
00241 /*     (13)    if sorting worked and SDIM is the number of */
00242 /*             eigenvalues which were SELECTed */
00243 
00244 /*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
00245 /*     each element NN(j) specifies one size. */
00246 /*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
00247 /*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
00248 /*     Currently, the list of possible types is: */
00249 
00250 /*     (1)  The zero matrix. */
00251 /*     (2)  The identity matrix. */
00252 /*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */
00253 
00254 /*     (4)  A diagonal matrix with evenly spaced entries */
00255 /*          1, ..., ULP  and random signs. */
00256 /*          (ULP = (first number larger than 1) - 1 ) */
00257 /*     (5)  A diagonal matrix with geometrically spaced entries */
00258 /*          1, ..., ULP  and random signs. */
00259 /*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
00260 /*          and random signs. */
00261 
00262 /*     (7)  Same as (4), but multiplied by a constant near */
00263 /*          the overflow threshold */
00264 /*     (8)  Same as (4), but multiplied by a constant near */
00265 /*          the underflow threshold */
00266 
00267 /*     (9)  A matrix of the form  U' T U, where U is orthogonal and */
00268 /*          T has evenly spaced entries 1, ..., ULP with random signs */
00269 /*          on the diagonal and random O(1) entries in the upper */
00270 /*          triangle. */
00271 
00272 /*     (10) A matrix of the form  U' T U, where U is orthogonal and */
00273 /*          T has geometrically spaced entries 1, ..., ULP with random */
00274 /*          signs on the diagonal and random O(1) entries in the upper */
00275 /*          triangle. */
00276 
00277 /*     (11) A matrix of the form  U' T U, where U is orthogonal and */
00278 /*          T has "clustered" entries 1, ULP,..., ULP with random */
00279 /*          signs on the diagonal and random O(1) entries in the upper */
00280 /*          triangle. */
00281 
00282 /*     (12) A matrix of the form  U' T U, where U is orthogonal and */
00283 /*          T has real or complex conjugate paired eigenvalues randomly */
00284 /*          chosen from ( ULP, 1 ) and random O(1) entries in the upper */
00285 /*          triangle. */
00286 
00287 /*     (13) A matrix of the form  X' T X, where X has condition */
00288 /*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
00289 /*          with random signs on the diagonal and random O(1) entries */
00290 /*          in the upper triangle. */
00291 
00292 /*     (14) A matrix of the form  X' T X, where X has condition */
00293 /*          SQRT( ULP ) and T has geometrically spaced entries */
00294 /*          1, ..., ULP with random signs on the diagonal and random */
00295 /*          O(1) entries in the upper triangle. */
00296 
00297 /*     (15) A matrix of the form  X' T X, where X has condition */
00298 /*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
00299 /*          with random signs on the diagonal and random O(1) entries */
00300 /*          in the upper triangle. */
00301 
00302 /*     (16) A matrix of the form  X' T X, where X has condition */
00303 /*          SQRT( ULP ) and T has real or complex conjugate paired */
00304 /*          eigenvalues randomly chosen from ( ULP, 1 ) and random */
00305 /*          O(1) entries in the upper triangle. */
00306 
00307 /*     (17) Same as (16), but multiplied by a constant */
00308 /*          near the overflow threshold */
00309 /*     (18) Same as (16), but multiplied by a constant */
00310 /*          near the underflow threshold */
00311 
00312 /*     (19) Nonsymmetric matrix with random entries chosen from (-1,1). */
00313 /*          If N is at least 4, all entries in first two rows and last */
00314 /*          row, and first column and last two columns are zero. */
00315 /*     (20) Same as (19), but multiplied by a constant */
00316 /*          near the overflow threshold */
00317 /*     (21) Same as (19), but multiplied by a constant */
00318 /*          near the underflow threshold */
00319 
00320 /*  Arguments */
00321 /*  ========= */
00322 
00323 /*  NSIZES  (input) INTEGER */
00324 /*          The number of sizes of matrices to use.  If it is zero, */
00325 /*          SDRVES does nothing.  It must be at least zero. */
00326 
00327 /*  NN      (input) INTEGER array, dimension (NSIZES) */
00328 /*          An array containing the sizes to be used for the matrices. */
00329 /*          Zero values will be skipped.  The values must be at least */
00330 /*          zero. */
00331 
00332 /*  NTYPES  (input) INTEGER */
00333 /*          The number of elements in DOTYPE.   If it is zero, SDRVES */
00334 /*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
00335 /*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
00336 /*          defined, which is to use whatever matrix is in A.  This */
00337 /*          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
00338 /*          DOTYPE(MAXTYP+1) is .TRUE. . */
00339 
00340 /*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
00341 /*          If DOTYPE(j) is .TRUE., then for each size in NN a */
00342 /*          matrix of that size and of type j will be generated. */
00343 /*          If NTYPES is smaller than the maximum number of types */
00344 /*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
00345 /*          MAXTYP will not be generated.  If NTYPES is larger */
00346 /*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
00347 /*          will be ignored. */
00348 
00349 /*  ISEED   (input/output) INTEGER array, dimension (4) */
00350 /*          On entry ISEED specifies the seed of the random number */
00351 /*          generator. The array elements should be between 0 and 4095; */
00352 /*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
00353 /*          be odd.  The random number generator uses a linear */
00354 /*          congruential sequence limited to small integers, and so */
00355 /*          should produce machine independent random numbers. The */
00356 /*          values of ISEED are changed on exit, and can be used in the */
00357 /*          next call to SDRVES to continue the same random number */
00358 /*          sequence. */
00359 
00360 /*  THRESH  (input) REAL */
00361 /*          A test will count as "failed" if the "error", computed as */
00362 /*          described above, exceeds THRESH.  Note that the error */
00363 /*          is scaled to be O(1), so THRESH should be a reasonably */
00364 /*          small multiple of 1, e.g., 10 or 100.  In particular, */
00365 /*          it should not depend on the precision (single vs. double) */
00366 /*          or the size of the matrix.  It must be at least zero. */
00367 
00368 /*  NOUNIT  (input) INTEGER */
00369 /*          The FORTRAN unit number for printing out error messages */
00370 /*          (e.g., if a routine returns INFO not equal to 0.) */
00371 
00372 /*  A       (workspace) REAL array, dimension (LDA, max(NN)) */
00373 /*          Used to hold the matrix whose eigenvalues are to be */
00374 /*          computed.  On exit, A contains the last matrix actually used. */
00375 
00376 /*  LDA     (input) INTEGER */
00377 /*          The leading dimension of A, and H. LDA must be at */
00378 /*          least 1 and at least max(NN). */
00379 
00380 /*  H       (workspace) REAL array, dimension (LDA, max(NN)) */
00381 /*          Another copy of the test matrix A, modified by SGEES. */
00382 
00383 /*  HT      (workspace) REAL array, dimension (LDA, max(NN)) */
00384 /*          Yet another copy of the test matrix A, modified by SGEES. */
00385 
00386 /*  WR      (workspace) REAL array, dimension (max(NN)) */
00387 /*  WI      (workspace) REAL array, dimension (max(NN)) */
00388 /*          The real and imaginary parts of the eigenvalues of A. */
00389 /*          On exit, WR + WI*i are the eigenvalues of the matrix in A. */
00390 
00391 /*  WRT     (workspace) REAL array, dimension (max(NN)) */
00392 /*  WIT     (workspace) REAL array, dimension (max(NN)) */
00393 /*          Like WR, WI, these arrays contain the eigenvalues of A, */
00394 /*          but those computed when SGEES only computes a partial */
00395 /*          eigendecomposition, i.e. not Schur vectors */
00396 
00397 /*  VS      (workspace) REAL array, dimension (LDVS, max(NN)) */
00398 /*          VS holds the computed Schur vectors. */
00399 
00400 /*  LDVS    (input) INTEGER */
00401 /*          Leading dimension of VS. Must be at least max(1,max(NN)). */
00402 
00403 /*  RESULT  (output) REAL array, dimension (13) */
00404 /*          The values computed by the 13 tests described above. */
00405 /*          The values are currently limited to 1/ulp, to avoid overflow. */
00406 
00407 /*  WORK    (workspace) REAL array, dimension (NWORK) */
00408 
00409 /*  NWORK   (input) INTEGER */
00410 /*          The number of entries in WORK.  This must be at least */
00411 /*          5*NN(j)+2*NN(j)**2 for all j. */
00412 
00413 /*  IWORK   (workspace) INTEGER array, dimension (max(NN)) */
00414 
00415 /*  INFO    (output) INTEGER */
00416 /*          If 0, then everything ran OK. */
00417 /*           -1: NSIZES < 0 */
00418 /*           -2: Some NN(j) < 0 */
00419 /*           -3: NTYPES < 0 */
00420 /*           -6: THRESH < 0 */
00421 /*           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). */
00422 /*          -17: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ). */
00423 /*          -20: NWORK too small. */
00424 /*          If  SLATMR, SLATMS, SLATME or SGEES returns an error code, */
00425 /*              the absolute value of it is returned. */
00426 
00427 /* ----------------------------------------------------------------------- */
00428 
00429 /*     Some Local Variables and Parameters: */
00430 /*     ---- ----- --------- --- ---------- */
00431 
00432 /*     ZERO, ONE       Real 0 and 1. */
00433 /*     MAXTYP          The number of types defined. */
00434 /*     NMAX            Largest value in NN. */
00435 /*     NERRS           The number of tests which have exceeded THRESH */
00436 /*     COND, CONDS, */
00437 /*     IMODE           Values to be passed to the matrix generators. */
00438 /*     ANORM           Norm of A; passed to matrix generators. */
00439 
00440 /*     OVFL, UNFL      Overflow and underflow thresholds. */
00441 /*     ULP, ULPINV     Finest relative precision and its inverse. */
00442 /*     RTULP, RTULPI   Square roots of the previous 4 values. */
00443 
00444 /*             The following four arrays decode JTYPE: */
00445 /*     KTYPE(j)        The general type (1-10) for type "j". */
00446 /*     KMODE(j)        The MODE value to be passed to the matrix */
00447 /*                     generator for type "j". */
00448 /*     KMAGN(j)        The order of magnitude ( O(1), */
00449 /*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
00450 /*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
00451 /*                     1/sqrt(ulp).  (0 means irrelevant.) */
00452 
00453 /*  ===================================================================== */
00454 
00455 /*     .. Parameters .. */
00456 /*     .. */
00457 /*     .. Local Scalars .. */
00458 /*     .. */
00459 /*     .. Local Arrays .. */
00460 /*     .. */
00461 /*     .. Arrays in Common .. */
00462 /*     .. */
00463 /*     .. Scalars in Common .. */
00464 /*     .. */
00465 /*     .. Common blocks .. */
00466 /*     .. */
00467 /*     .. External Functions .. */
00468 /*     .. */
00469 /*     .. External Subroutines .. */
00470 /*     .. */
00471 /*     .. Intrinsic Functions .. */
00472 /*     .. */
00473 /*     .. Data statements .. */
00474     /* Parameter adjustments */
00475     --nn;
00476     --dotype;
00477     --iseed;
00478     ht_dim1 = *lda;
00479     ht_offset = 1 + ht_dim1;
00480     ht -= ht_offset;
00481     h_dim1 = *lda;
00482     h_offset = 1 + h_dim1;
00483     h__ -= h_offset;
00484     a_dim1 = *lda;
00485     a_offset = 1 + a_dim1;
00486     a -= a_offset;
00487     --wr;
00488     --wi;
00489     --wrt;
00490     --wit;
00491     vs_dim1 = *ldvs;
00492     vs_offset = 1 + vs_dim1;
00493     vs -= vs_offset;
00494     --result;
00495     --work;
00496     --iwork;
00497     --bwork;
00498 
00499     /* Function Body */
00500 /*     .. */
00501 /*     .. Executable Statements .. */
00502 
00503     s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16);
00504     s_copy(path + 1, "ES", (ftnlen)2, (ftnlen)2);
00505 
00506 /*     Check for errors */
00507 
00508     ntestt = 0;
00509     ntestf = 0;
00510     *info = 0;
00511     sslct_1.selopt = 0;
00512 
00513 /*     Important constants */
00514 
00515     badnn = FALSE_;
00516     nmax = 0;
00517     i__1 = *nsizes;
00518     for (j = 1; j <= i__1; ++j) {
00519 /* Computing MAX */
00520         i__2 = nmax, i__3 = nn[j];
00521         nmax = max(i__2,i__3);
00522         if (nn[j] < 0) {
00523             badnn = TRUE_;
00524         }
00525 /* L10: */
00526     }
00527 
00528 /*     Check for errors */
00529 
00530     if (*nsizes < 0) {
00531         *info = -1;
00532     } else if (badnn) {
00533         *info = -2;
00534     } else if (*ntypes < 0) {
00535         *info = -3;
00536     } else if (*thresh < 0.f) {
00537         *info = -6;
00538     } else if (*nounit <= 0) {
00539         *info = -7;
00540     } else if (*lda < 1 || *lda < nmax) {
00541         *info = -9;
00542     } else if (*ldvs < 1 || *ldvs < nmax) {
00543         *info = -17;
00544     } else /* if(complicated condition) */ {
00545 /* Computing 2nd power */
00546         i__1 = nmax;
00547         if (nmax * 5 + (i__1 * i__1 << 1) > *nwork) {
00548             *info = -20;
00549         }
00550     }
00551 
00552     if (*info != 0) {
00553         i__1 = -(*info);
00554         xerbla_("SDRVES", &i__1);
00555         return 0;
00556     }
00557 
00558 /*     Quick return if nothing to do */
00559 
00560     if (*nsizes == 0 || *ntypes == 0) {
00561         return 0;
00562     }
00563 
00564 /*     More Important constants */
00565 
00566     unfl = slamch_("Safe minimum");
00567     ovfl = 1.f / unfl;
00568     slabad_(&unfl, &ovfl);
00569     ulp = slamch_("Precision");
00570     ulpinv = 1.f / ulp;
00571     rtulp = sqrt(ulp);
00572     rtulpi = 1.f / rtulp;
00573 
00574 /*     Loop over sizes, types */
00575 
00576     nerrs = 0;
00577 
00578     i__1 = *nsizes;
00579     for (jsize = 1; jsize <= i__1; ++jsize) {
00580         n = nn[jsize];
00581         mtypes = 21;
00582         if (*nsizes == 1 && *ntypes == 22) {
00583             ++mtypes;
00584         }
00585 
00586         i__2 = mtypes;
00587         for (jtype = 1; jtype <= i__2; ++jtype) {
00588             if (! dotype[jtype]) {
00589                 goto L260;
00590             }
00591 
00592 /*           Save ISEED in case of an error. */
00593 
00594             for (j = 1; j <= 4; ++j) {
00595                 ioldsd[j - 1] = iseed[j];
00596 /* L20: */
00597             }
00598 
00599 /*           Compute "A" */
00600 
00601 /*           Control parameters: */
00602 
00603 /*           KMAGN  KCONDS  KMODE        KTYPE */
00604 /*       =1  O(1)   1       clustered 1  zero */
00605 /*       =2  large  large   clustered 2  identity */
00606 /*       =3  small          exponential  Jordan */
00607 /*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
00608 /*       =5                 random log   symmetric, w/ eigenvalues */
00609 /*       =6                 random       general, w/ eigenvalues */
00610 /*       =7                              random diagonal */
00611 /*       =8                              random symmetric */
00612 /*       =9                              random general */
00613 /*       =10                             random triangular */
00614 
00615             if (mtypes > 21) {
00616                 goto L90;
00617             }
00618 
00619             itype = ktype[jtype - 1];
00620             imode = kmode[jtype - 1];
00621 
00622 /*           Compute norm */
00623 
00624             switch (kmagn[jtype - 1]) {
00625                 case 1:  goto L30;
00626                 case 2:  goto L40;
00627                 case 3:  goto L50;
00628             }
00629 
00630 L30:
00631             anorm = 1.f;
00632             goto L60;
00633 
00634 L40:
00635             anorm = ovfl * ulp;
00636             goto L60;
00637 
00638 L50:
00639             anorm = unfl * ulpinv;
00640             goto L60;
00641 
00642 L60:
00643 
00644             slaset_("Full", lda, &n, &c_b17, &c_b17, &a[a_offset], lda);
00645             iinfo = 0;
00646             cond = ulpinv;
00647 
00648 /*           Special Matrices -- Identity & Jordan block */
00649 
00650 /*              Zero */
00651 
00652             if (itype == 1) {
00653                 iinfo = 0;
00654 
00655             } else if (itype == 2) {
00656 
00657 /*              Identity */
00658 
00659                 i__3 = n;
00660                 for (jcol = 1; jcol <= i__3; ++jcol) {
00661                     a[jcol + jcol * a_dim1] = anorm;
00662 /* L70: */
00663                 }
00664 
00665             } else if (itype == 3) {
00666 
00667 /*              Jordan Block */
00668 
00669                 i__3 = n;
00670                 for (jcol = 1; jcol <= i__3; ++jcol) {
00671                     a[jcol + jcol * a_dim1] = anorm;
00672                     if (jcol > 1) {
00673                         a[jcol + (jcol - 1) * a_dim1] = 1.f;
00674                     }
00675 /* L80: */
00676                 }
00677 
00678             } else if (itype == 4) {
00679 
00680 /*              Diagonal Matrix, [Eigen]values Specified */
00681 
00682                 slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
00683                         &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
00684                         + 1], &iinfo);
00685 
00686             } else if (itype == 5) {
00687 
00688 /*              Symmetric, eigenvalues specified */
00689 
00690                 slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
00691                         &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
00692                         &iinfo);
00693 
00694             } else if (itype == 6) {
00695 
00696 /*              General, eigenvalues specified */
00697 
00698                 if (kconds[jtype - 1] == 1) {
00699                     conds = 1.f;
00700                 } else if (kconds[jtype - 1] == 2) {
00701                     conds = rtulpi;
00702                 } else {
00703                     conds = 0.f;
00704                 }
00705 
00706                 *(unsigned char *)&adumma[0] = ' ';
00707                 slatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b31, 
00708                         adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
00709                         n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], 
00710                          &iinfo);
00711 
00712             } else if (itype == 7) {
00713 
00714 /*              Diagonal, random eigenvalues */
00715 
00716                 slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, 
00717                         &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
00718                         n << 1) + 1], &c__1, &c_b31, "N", idumma, &c__0, &
00719                         c__0, &c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[
00720                         1], &iinfo);
00721 
00722             } else if (itype == 8) {
00723 
00724 /*              Symmetric, random eigenvalues */
00725 
00726                 slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, 
00727                         &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
00728                         n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, &
00729                         c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
00730                         iinfo);
00731 
00732             } else if (itype == 9) {
00733 
00734 /*              General, random eigenvalues */
00735 
00736                 slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, 
00737                         &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
00738                         n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, &
00739                         c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
00740                         iinfo);
00741                 if (n >= 4) {
00742                     slaset_("Full", &c__2, &n, &c_b17, &c_b17, &a[a_offset], 
00743                             lda);
00744                     i__3 = n - 3;
00745                     slaset_("Full", &i__3, &c__1, &c_b17, &c_b17, &a[a_dim1 + 
00746                             3], lda);
00747                     i__3 = n - 3;
00748                     slaset_("Full", &i__3, &c__2, &c_b17, &c_b17, &a[(n - 1) *
00749                              a_dim1 + 3], lda);
00750                     slaset_("Full", &c__1, &n, &c_b17, &c_b17, &a[n + a_dim1], 
00751                              lda);
00752                 }
00753 
00754             } else if (itype == 10) {
00755 
00756 /*              Triangular, random eigenvalues */
00757 
00758                 slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, 
00759                         &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[(
00760                         n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &c__0, &
00761                         c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
00762                         iinfo);
00763 
00764             } else {
00765 
00766                 iinfo = 1;
00767             }
00768 
00769             if (iinfo != 0) {
00770                 io___32.ciunit = *nounit;
00771                 s_wsfe(&io___32);
00772                 do_fio(&c__1, "Generator", (ftnlen)9);
00773                 do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
00774                 do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00775                 do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
00776                 do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
00777                 e_wsfe();
00778                 *info = abs(iinfo);
00779                 return 0;
00780             }
00781 
00782 L90:
00783 
00784 /*           Test for minimal and generous workspace */
00785 
00786             for (iwk = 1; iwk <= 2; ++iwk) {
00787                 if (iwk == 1) {
00788                     nnwork = n * 3;
00789                 } else {
00790 /* Computing 2nd power */
00791                     i__3 = n;
00792                     nnwork = n * 5 + (i__3 * i__3 << 1);
00793                 }
00794                 nnwork = max(nnwork,1);
00795 
00796 /*              Initialize RESULT */
00797 
00798                 for (j = 1; j <= 13; ++j) {
00799                     result[j] = -1.f;
00800 /* L100: */
00801                 }
00802 
00803 /*              Test with and without sorting of eigenvalues */
00804 
00805                 for (isort = 0; isort <= 1; ++isort) {
00806                     if (isort == 0) {
00807                         *(unsigned char *)sort = 'N';
00808                         rsub = 0;
00809                     } else {
00810                         *(unsigned char *)sort = 'S';
00811                         rsub = 6;
00812                     }
00813 
00814 /*                 Compute Schur form and Schur vectors, and test them */
00815 
00816                     slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], 
00817                             lda);
00818                     sgees_("V", sort, (L_fp)sslect_, &n, &h__[h_offset], lda, 
00819                             &sdim, &wr[1], &wi[1], &vs[vs_offset], ldvs, &
00820                             work[1], &nnwork, &bwork[1], &iinfo);
00821                     if (iinfo != 0 && iinfo != n + 2) {
00822                         result[rsub + 1] = ulpinv;
00823                         io___39.ciunit = *nounit;
00824                         s_wsfe(&io___39);
00825                         do_fio(&c__1, "SGEES1", (ftnlen)6);
00826                         do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
00827                                 ;
00828                         do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00829                         do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
00830                                 ;
00831                         do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
00832                                 integer));
00833                         e_wsfe();
00834                         *info = abs(iinfo);
00835                         goto L220;
00836                     }
00837 
00838 /*                 Do Test (1) or Test (7) */
00839 
00840                     result[rsub + 1] = 0.f;
00841                     i__3 = n - 2;
00842                     for (j = 1; j <= i__3; ++j) {
00843                         i__4 = n;
00844                         for (i__ = j + 2; i__ <= i__4; ++i__) {
00845                             if (h__[i__ + j * h_dim1] != 0.f) {
00846                                 result[rsub + 1] = ulpinv;
00847                             }
00848 /* L110: */
00849                         }
00850 /* L120: */
00851                     }
00852                     i__3 = n - 2;
00853                     for (i__ = 1; i__ <= i__3; ++i__) {
00854                         if (h__[i__ + 1 + i__ * h_dim1] != 0.f && h__[i__ + 2 
00855                                 + (i__ + 1) * h_dim1] != 0.f) {
00856                             result[rsub + 1] = ulpinv;
00857                         }
00858 /* L130: */
00859                     }
00860                     i__3 = n - 1;
00861                     for (i__ = 1; i__ <= i__3; ++i__) {
00862                         if (h__[i__ + 1 + i__ * h_dim1] != 0.f) {
00863                             if (h__[i__ + i__ * h_dim1] != h__[i__ + 1 + (i__ 
00864                                     + 1) * h_dim1] || h__[i__ + (i__ + 1) * 
00865                                     h_dim1] == 0.f || r_sign(&c_b31, &h__[i__ 
00866                                     + 1 + i__ * h_dim1]) == r_sign(&c_b31, &
00867                                     h__[i__ + (i__ + 1) * h_dim1])) {
00868                                 result[rsub + 1] = ulpinv;
00869                             }
00870                         }
00871 /* L140: */
00872                     }
00873 
00874 /*                 Do Tests (2) and (3) or Tests (8) and (9) */
00875 
00876 /* Computing MAX */
00877                     i__3 = 1, i__4 = (n << 1) * n;
00878                     lwork = max(i__3,i__4);
00879                     shst01_(&n, &c__1, &n, &a[a_offset], lda, &h__[h_offset], 
00880                             lda, &vs[vs_offset], ldvs, &work[1], &lwork, res);
00881                     result[rsub + 2] = res[0];
00882                     result[rsub + 3] = res[1];
00883 
00884 /*                 Do Test (4) or Test (10) */
00885 
00886                     result[rsub + 4] = 0.f;
00887                     i__3 = n;
00888                     for (i__ = 1; i__ <= i__3; ++i__) {
00889                         if (h__[i__ + i__ * h_dim1] != wr[i__]) {
00890                             result[rsub + 4] = ulpinv;
00891                         }
00892 /* L150: */
00893                     }
00894                     if (n > 1) {
00895                         if (h__[h_dim1 + 2] == 0.f && wi[1] != 0.f) {
00896                             result[rsub + 4] = ulpinv;
00897                         }
00898                         if (h__[n + (n - 1) * h_dim1] == 0.f && wi[n] != 0.f) 
00899                                 {
00900                             result[rsub + 4] = ulpinv;
00901                         }
00902                     }
00903                     i__3 = n - 1;
00904                     for (i__ = 1; i__ <= i__3; ++i__) {
00905                         if (h__[i__ + 1 + i__ * h_dim1] != 0.f) {
00906                             tmp = sqrt((r__1 = h__[i__ + 1 + i__ * h_dim1], 
00907                                     dabs(r__1))) * sqrt((r__2 = h__[i__ + (
00908                                     i__ + 1) * h_dim1], dabs(r__2)));
00909 /* Computing MAX */
00910 /* Computing MAX */
00911                             r__4 = ulp * tmp;
00912                             r__2 = result[rsub + 4], r__3 = (r__1 = wi[i__] - 
00913                                     tmp, dabs(r__1)) / dmax(r__4,unfl);
00914                             result[rsub + 4] = dmax(r__2,r__3);
00915 /* Computing MAX */
00916 /* Computing MAX */
00917                             r__4 = ulp * tmp;
00918                             r__2 = result[rsub + 4], r__3 = (r__1 = wi[i__ + 
00919                                     1] + tmp, dabs(r__1)) / dmax(r__4,unfl);
00920                             result[rsub + 4] = dmax(r__2,r__3);
00921                         } else if (i__ > 1) {
00922                             if (h__[i__ + 1 + i__ * h_dim1] == 0.f && h__[i__ 
00923                                     + (i__ - 1) * h_dim1] == 0.f && wi[i__] !=
00924                                      0.f) {
00925                                 result[rsub + 4] = ulpinv;
00926                             }
00927                         }
00928 /* L160: */
00929                     }
00930 
00931 /*                 Do Test (5) or Test (11) */
00932 
00933                     slacpy_("F", &n, &n, &a[a_offset], lda, &ht[ht_offset], 
00934                             lda);
00935                     sgees_("N", sort, (L_fp)sslect_, &n, &ht[ht_offset], lda, 
00936                             &sdim, &wrt[1], &wit[1], &vs[vs_offset], ldvs, &
00937                             work[1], &nnwork, &bwork[1], &iinfo);
00938                     if (iinfo != 0 && iinfo != n + 2) {
00939                         result[rsub + 5] = ulpinv;
00940                         io___44.ciunit = *nounit;
00941                         s_wsfe(&io___44);
00942                         do_fio(&c__1, "SGEES2", (ftnlen)6);
00943                         do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
00944                                 ;
00945                         do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
00946                         do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
00947                                 ;
00948                         do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
00949                                 integer));
00950                         e_wsfe();
00951                         *info = abs(iinfo);
00952                         goto L220;
00953                     }
00954 
00955                     result[rsub + 5] = 0.f;
00956                     i__3 = n;
00957                     for (j = 1; j <= i__3; ++j) {
00958                         i__4 = n;
00959                         for (i__ = 1; i__ <= i__4; ++i__) {
00960                             if (h__[i__ + j * h_dim1] != ht[i__ + j * ht_dim1]
00961                                     ) {
00962                                 result[rsub + 5] = ulpinv;
00963                             }
00964 /* L170: */
00965                         }
00966 /* L180: */
00967                     }
00968 
00969 /*                 Do Test (6) or Test (12) */
00970 
00971                     result[rsub + 6] = 0.f;
00972                     i__3 = n;
00973                     for (i__ = 1; i__ <= i__3; ++i__) {
00974                         if (wr[i__] != wrt[i__] || wi[i__] != wit[i__]) {
00975                             result[rsub + 6] = ulpinv;
00976                         }
00977 /* L190: */
00978                     }
00979 
00980 /*                 Do Test (13) */
00981 
00982                     if (isort == 1) {
00983                         result[13] = 0.f;
00984                         knteig = 0;
00985                         i__3 = n;
00986                         for (i__ = 1; i__ <= i__3; ++i__) {
00987                             r__1 = -wi[i__];
00988                             if (sslect_(&wr[i__], &wi[i__]) || sslect_(&wr[
00989                                     i__], &r__1)) {
00990                                 ++knteig;
00991                             }
00992                             if (i__ < n) {
00993                                 r__1 = -wi[i__ + 1];
00994                                 r__2 = -wi[i__];
00995                                 if ((sslect_(&wr[i__ + 1], &wi[i__ + 1]) || 
00996                                         sslect_(&wr[i__ + 1], &r__1)) && ! (
00997                                         sslect_(&wr[i__], &wi[i__]) || 
00998                                         sslect_(&wr[i__], &r__2)) && iinfo != 
00999                                         n + 2) {
01000                                     result[13] = ulpinv;
01001                                 }
01002                             }
01003 /* L200: */
01004                         }
01005                         if (sdim != knteig) {
01006                             result[13] = ulpinv;
01007                         }
01008                     }
01009 
01010 /* L210: */
01011                 }
01012 
01013 /*              End of Loop -- Check for RESULT(j) > THRESH */
01014 
01015 L220:
01016 
01017                 ntest = 0;
01018                 nfail = 0;
01019                 for (j = 1; j <= 13; ++j) {
01020                     if (result[j] >= 0.f) {
01021                         ++ntest;
01022                     }
01023                     if (result[j] >= *thresh) {
01024                         ++nfail;
01025                     }
01026 /* L230: */
01027                 }
01028 
01029                 if (nfail > 0) {
01030                     ++ntestf;
01031                 }
01032                 if (ntestf == 1) {
01033                     io___48.ciunit = *nounit;
01034                     s_wsfe(&io___48);
01035                     do_fio(&c__1, path, (ftnlen)3);
01036                     e_wsfe();
01037                     io___49.ciunit = *nounit;
01038                     s_wsfe(&io___49);
01039                     e_wsfe();
01040                     io___50.ciunit = *nounit;
01041                     s_wsfe(&io___50);
01042                     e_wsfe();
01043                     io___51.ciunit = *nounit;
01044                     s_wsfe(&io___51);
01045                     e_wsfe();
01046                     io___52.ciunit = *nounit;
01047                     s_wsfe(&io___52);
01048                     do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real));
01049                     e_wsfe();
01050                     io___53.ciunit = *nounit;
01051                     s_wsfe(&io___53);
01052                     e_wsfe();
01053                     ntestf = 2;
01054                 }
01055 
01056                 for (j = 1; j <= 13; ++j) {
01057                     if (result[j] >= *thresh) {
01058                         io___54.ciunit = *nounit;
01059                         s_wsfe(&io___54);
01060                         do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
01061                         do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
01062                         do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
01063                                 integer));
01064                         do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
01065                                 ;
01066                         do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
01067                         do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real)
01068                                 );
01069                         e_wsfe();
01070                     }
01071 /* L240: */
01072                 }
01073 
01074                 nerrs += nfail;
01075                 ntestt += ntest;
01076 
01077 /* L250: */
01078             }
01079 L260:
01080             ;
01081         }
01082 /* L270: */
01083     }
01084 
01085 /*     Summary */
01086 
01087     slasum_(path, nounit, &nerrs, &ntestt);
01088 
01089 
01090 
01091     return 0;
01092 
01093 /*     End of SDRVES */
01094 
01095 } /* sdrves_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:56:00