lapacke_dgejsv_work.c
Go to the documentation of this file.
00001 /*****************************************************************************
00002   Copyright (c) 2010, Intel Corp.
00003   All rights reserved.
00004 
00005   Redistribution and use in source and binary forms, with or without
00006   modification, are permitted provided that the following conditions are met:
00007 
00008     * Redistributions of source code must retain the above copyright notice,
00009       this list of conditions and the following disclaimer.
00010     * Redistributions in binary form must reproduce the above copyright
00011       notice, this list of conditions and the following disclaimer in the
00012       documentation and/or other materials provided with the distribution.
00013     * Neither the name of Intel Corporation nor the names of its contributors
00014       may be used to endorse or promote products derived from this software
00015       without specific prior written permission.
00016 
00017   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00018   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00019   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00020   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
00021   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00022   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
00023   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00024   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00025   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
00026   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
00027   THE POSSIBILITY OF SUCH DAMAGE.
00028 ******************************************************************************
00029 * Contents: Native middle-level C interface to LAPACK function dgejsv
00030 * Author: Intel Corporation
00031 * Generated October, 2010
00032 *****************************************************************************/
00033 
00034 #include "lapacke.h"
00035 #include "lapacke_utils.h"
00036 
00037 lapack_int LAPACKE_dgejsv_work( int matrix_order, char joba, char jobu,
00038                                 char jobv, char jobr, char jobt, char jobp,
00039                                 lapack_int m, lapack_int n, double* a,
00040                                 lapack_int lda, double* sva, double* u,
00041                                 lapack_int ldu, double* v, lapack_int ldv,
00042                                 double* work, lapack_int lwork,
00043                                 lapack_int* iwork )
00044 {
00045     lapack_int info = 0;
00046     if( matrix_order == LAPACK_COL_MAJOR ) {
00047         /* Call LAPACK function and adjust info */
00048         LAPACK_dgejsv( &joba, &jobu, &jobv, &jobr, &jobt, &jobp, &m, &n, a,
00049                        &lda, sva, u, &ldu, v, &ldv, work, &lwork, iwork,
00050                        &info );
00051         if( info < 0 ) {
00052             info = info - 1;
00053         }
00054     } else if( matrix_order == LAPACK_ROW_MAJOR ) {
00055         lapack_int nu = LAPACKE_lsame( jobu, 'n' ) ? 1 : m;
00056         lapack_int nv = LAPACKE_lsame( jobv, 'n' ) ? 1 : n;
00057         lapack_int lda_t = MAX(1,m);
00058         lapack_int ldu_t = MAX(1,nu);
00059         lapack_int ldv_t = MAX(1,nv);
00060         double* a_t = NULL;
00061         double* u_t = NULL;
00062         double* v_t = NULL;
00063         /* Check leading dimension(s) */
00064         if( lda < n ) {
00065             info = -11;
00066             LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
00067             return info;
00068         }
00069         if( ldu < n ) {
00070             info = -14;
00071             LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
00072             return info;
00073         }
00074         if( ldv < n ) {
00075             info = -16;
00076             LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
00077             return info;
00078         }
00079         /* Allocate memory for temporary array(s) */
00080         a_t = (double*)LAPACKE_malloc( sizeof(double) * lda_t * MAX(1,n) );
00081         if( a_t == NULL ) {
00082             info = LAPACK_TRANSPOSE_MEMORY_ERROR;
00083             goto exit_level_0;
00084         }
00085         if( LAPACKE_lsame( jobu, 'f' ) || LAPACKE_lsame( jobu, 'u' ) ||
00086             LAPACKE_lsame( jobu, 'w' ) ) {
00087             u_t = (double*)LAPACKE_malloc( sizeof(double) * ldu_t * MAX(1,n) );
00088             if( u_t == NULL ) {
00089                 info = LAPACK_TRANSPOSE_MEMORY_ERROR;
00090                 goto exit_level_1;
00091             }
00092         }
00093         if( LAPACKE_lsame( jobv, 'j' ) || LAPACKE_lsame( jobv, 'v' ) ||
00094             LAPACKE_lsame( jobv, 'w' ) ) {
00095             v_t = (double*)LAPACKE_malloc( sizeof(double) * ldv_t * MAX(1,n) );
00096             if( v_t == NULL ) {
00097                 info = LAPACK_TRANSPOSE_MEMORY_ERROR;
00098                 goto exit_level_2;
00099             }
00100         }
00101         /* Transpose input matrices */
00102         LAPACKE_dge_trans( matrix_order, m, n, a, lda, a_t, lda_t );
00103         if( LAPACKE_lsame( jobu, 'f' ) || LAPACKE_lsame( jobu, 'u' ) ||
00104             LAPACKE_lsame( jobu, 'w' ) ) {
00105             LAPACKE_dge_trans( matrix_order, nu, n, u, ldu, u_t, ldu_t );
00106         }
00107         if( LAPACKE_lsame( jobv, 'j' ) || LAPACKE_lsame( jobv, 'v' ) ||
00108             LAPACKE_lsame( jobv, 'w' ) ) {
00109             LAPACKE_dge_trans( matrix_order, nv, n, v, ldv, v_t, ldv_t );
00110         }
00111         /* Call LAPACK function and adjust info */
00112         LAPACK_dgejsv( &joba, &jobu, &jobv, &jobr, &jobt, &jobp, &m, &n, a_t,
00113                        &lda_t, sva, u_t, &ldu_t, v_t, &ldv_t, work, &lwork,
00114                        iwork, &info );
00115         if( info < 0 ) {
00116             info = info - 1;
00117         }
00118         /* Transpose output matrices */
00119         if( LAPACKE_lsame( jobu, 'f' ) || LAPACKE_lsame( jobu, 'u' ) ||
00120             LAPACKE_lsame( jobu, 'w' ) ) {
00121             LAPACKE_dge_trans( LAPACK_COL_MAJOR, nu, n, u_t, ldu_t, u, ldu );
00122         }
00123         if( LAPACKE_lsame( jobv, 'j' ) || LAPACKE_lsame( jobv, 'v' ) ||
00124             LAPACKE_lsame( jobv, 'w' ) ) {
00125             LAPACKE_dge_trans( LAPACK_COL_MAJOR, nv, n, v_t, ldv_t, v, ldv );
00126         }
00127         /* Release memory and exit */
00128         if( LAPACKE_lsame( jobv, 'j' ) || LAPACKE_lsame( jobv, 'v' ) ||
00129             LAPACKE_lsame( jobv, 'w' ) ) {
00130             LAPACKE_free( v_t );
00131         }
00132 exit_level_2:
00133         if( LAPACKE_lsame( jobu, 'f' ) || LAPACKE_lsame( jobu, 'u' ) ||
00134             LAPACKE_lsame( jobu, 'w' ) ) {
00135             LAPACKE_free( u_t );
00136         }
00137 exit_level_1:
00138         LAPACKE_free( a_t );
00139 exit_level_0:
00140         if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
00141             LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
00142         }
00143     } else {
00144         info = -1;
00145         LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
00146     }
00147     return info;
00148 }


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:52