dtzrqf.c
Go to the documentation of this file.
00001 /* dtzrqf.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 static doublereal c_b8 = 1.;
00020 
00021 /* Subroutine */ int dtzrqf_(integer *m, integer *n, doublereal *a, integer *
00022         lda, doublereal *tau, integer *info)
00023 {
00024     /* System generated locals */
00025     integer a_dim1, a_offset, i__1, i__2;
00026     doublereal d__1;
00027 
00028     /* Local variables */
00029     integer i__, k, m1;
00030     extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
00031             doublereal *, integer *, doublereal *, integer *, doublereal *, 
00032             integer *), dgemv_(char *, integer *, integer *, doublereal *, 
00033             doublereal *, integer *, doublereal *, integer *, doublereal *, 
00034             doublereal *, integer *), dcopy_(integer *, doublereal *, 
00035             integer *, doublereal *, integer *), daxpy_(integer *, doublereal 
00036             *, doublereal *, integer *, doublereal *, integer *), dlarfp_(
00037             integer *, doublereal *, doublereal *, integer *, doublereal *), 
00038             xerbla_(char *, integer *);
00039 
00040 
00041 /*  -- LAPACK routine (version 3.2) -- */
00042 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00043 /*     November 2006 */
00044 
00045 /*     .. Scalar Arguments .. */
00046 /*     .. */
00047 /*     .. Array Arguments .. */
00048 /*     .. */
00049 
00050 /*  Purpose */
00051 /*  ======= */
00052 
00053 /*  This routine is deprecated and has been replaced by routine DTZRZF. */
00054 
00055 /*  DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A */
00056 /*  to upper triangular form by means of orthogonal transformations. */
00057 
00058 /*  The upper trapezoidal matrix A is factored as */
00059 
00060 /*     A = ( R  0 ) * Z, */
00061 
00062 /*  where Z is an N-by-N orthogonal matrix and R is an M-by-M upper */
00063 /*  triangular matrix. */
00064 
00065 /*  Arguments */
00066 /*  ========= */
00067 
00068 /*  M       (input) INTEGER */
00069 /*          The number of rows of the matrix A.  M >= 0. */
00070 
00071 /*  N       (input) INTEGER */
00072 /*          The number of columns of the matrix A.  N >= M. */
00073 
00074 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
00075 /*          On entry, the leading M-by-N upper trapezoidal part of the */
00076 /*          array A must contain the matrix to be factorized. */
00077 /*          On exit, the leading M-by-M upper triangular part of A */
00078 /*          contains the upper triangular matrix R, and elements M+1 to */
00079 /*          N of the first M rows of A, with the array TAU, represent the */
00080 /*          orthogonal matrix Z as a product of M elementary reflectors. */
00081 
00082 /*  LDA     (input) INTEGER */
00083 /*          The leading dimension of the array A.  LDA >= max(1,M). */
00084 
00085 /*  TAU     (output) DOUBLE PRECISION array, dimension (M) */
00086 /*          The scalar factors of the elementary reflectors. */
00087 
00088 /*  INFO    (output) INTEGER */
00089 /*          = 0:  successful exit */
00090 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00091 
00092 /*  Further Details */
00093 /*  =============== */
00094 
00095 /*  The factorization is obtained by Householder's method.  The kth */
00096 /*  transformation matrix, Z( k ), which is used to introduce zeros into */
00097 /*  the ( m - k + 1 )th row of A, is given in the form */
00098 
00099 /*     Z( k ) = ( I     0   ), */
00100 /*              ( 0  T( k ) ) */
00101 
00102 /*  where */
00103 
00104 /*     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ), */
00105 /*                                                 (   0    ) */
00106 /*                                                 ( z( k ) ) */
00107 
00108 /*  tau is a scalar and z( k ) is an ( n - m ) element vector. */
00109 /*  tau and z( k ) are chosen to annihilate the elements of the kth row */
00110 /*  of X. */
00111 
00112 /*  The scalar tau is returned in the kth element of TAU and the vector */
00113 /*  u( k ) in the kth row of A, such that the elements of z( k ) are */
00114 /*  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
00115 /*  the upper triangular part of A. */
00116 
00117 /*  Z is given by */
00118 
00119 /*     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ). */
00120 
00121 /*  ===================================================================== */
00122 
00123 /*     .. Parameters .. */
00124 /*     .. */
00125 /*     .. Local Scalars .. */
00126 /*     .. */
00127 /*     .. Intrinsic Functions .. */
00128 /*     .. */
00129 /*     .. External Subroutines .. */
00130 /*     .. */
00131 /*     .. Executable Statements .. */
00132 
00133 /*     Test the input parameters. */
00134 
00135     /* Parameter adjustments */
00136     a_dim1 = *lda;
00137     a_offset = 1 + a_dim1;
00138     a -= a_offset;
00139     --tau;
00140 
00141     /* Function Body */
00142     *info = 0;
00143     if (*m < 0) {
00144         *info = -1;
00145     } else if (*n < *m) {
00146         *info = -2;
00147     } else if (*lda < max(1,*m)) {
00148         *info = -4;
00149     }
00150     if (*info != 0) {
00151         i__1 = -(*info);
00152         xerbla_("DTZRQF", &i__1);
00153         return 0;
00154     }
00155 
00156 /*     Perform the factorization. */
00157 
00158     if (*m == 0) {
00159         return 0;
00160     }
00161     if (*m == *n) {
00162         i__1 = *n;
00163         for (i__ = 1; i__ <= i__1; ++i__) {
00164             tau[i__] = 0.;
00165 /* L10: */
00166         }
00167     } else {
00168 /* Computing MIN */
00169         i__1 = *m + 1;
00170         m1 = min(i__1,*n);
00171         for (k = *m; k >= 1; --k) {
00172 
00173 /*           Use a Householder reflection to zero the kth row of A. */
00174 /*           First set up the reflection. */
00175 
00176             i__1 = *n - *m + 1;
00177             dlarfp_(&i__1, &a[k + k * a_dim1], &a[k + m1 * a_dim1], lda, &tau[
00178                     k]);
00179 
00180             if (tau[k] != 0. && k > 1) {
00181 
00182 /*              We now perform the operation  A := A*P( k ). */
00183 
00184 /*              Use the first ( k - 1 ) elements of TAU to store  a( k ), */
00185 /*              where  a( k ) consists of the first ( k - 1 ) elements of */
00186 /*              the  kth column  of  A.  Also  let  B  denote  the  first */
00187 /*              ( k - 1 ) rows of the last ( n - m ) columns of A. */
00188 
00189                 i__1 = k - 1;
00190                 dcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &tau[1], &c__1);
00191 
00192 /*              Form   w = a( k ) + B*z( k )  in TAU. */
00193 
00194                 i__1 = k - 1;
00195                 i__2 = *n - *m;
00196                 dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[m1 * a_dim1 + 
00197                         1], lda, &a[k + m1 * a_dim1], lda, &c_b8, &tau[1], &
00198                         c__1);
00199 
00200 /*              Now form  a( k ) := a( k ) - tau*w */
00201 /*              and       B      := B      - tau*w*z( k )'. */
00202 
00203                 i__1 = k - 1;
00204                 d__1 = -tau[k];
00205                 daxpy_(&i__1, &d__1, &tau[1], &c__1, &a[k * a_dim1 + 1], &
00206                         c__1);
00207                 i__1 = k - 1;
00208                 i__2 = *n - *m;
00209                 d__1 = -tau[k];
00210                 dger_(&i__1, &i__2, &d__1, &tau[1], &c__1, &a[k + m1 * a_dim1]
00211 , lda, &a[m1 * a_dim1 + 1], lda);
00212             }
00213 /* L20: */
00214         }
00215     }
00216 
00217     return 0;
00218 
00219 /*     End of DTZRQF */
00220 
00221 } /* dtzrqf_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:50