00001 /* dtptrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dtptrs_(char *uplo, char *trans, char *diag, integer *n, 00021 integer *nrhs, doublereal *ap, doublereal *b, integer *ldb, integer * 00022 info) 00023 { 00024 /* System generated locals */ 00025 integer b_dim1, b_offset, i__1; 00026 00027 /* Local variables */ 00028 integer j, jc; 00029 extern logical lsame_(char *, char *); 00030 logical upper; 00031 extern /* Subroutine */ int dtpsv_(char *, char *, char *, integer *, 00032 doublereal *, doublereal *, integer *), 00033 xerbla_(char *, integer *); 00034 logical nounit; 00035 00036 00037 /* -- LAPACK routine (version 3.2) -- */ 00038 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00039 /* November 2006 */ 00040 00041 /* .. Scalar Arguments .. */ 00042 /* .. */ 00043 /* .. Array Arguments .. */ 00044 /* .. */ 00045 00046 /* Purpose */ 00047 /* ======= */ 00048 00049 /* DTPTRS solves a triangular system of the form */ 00050 00051 /* A * X = B or A**T * X = B, */ 00052 00053 /* where A is a triangular matrix of order N stored in packed format, */ 00054 /* and B is an N-by-NRHS matrix. A check is made to verify that A is */ 00055 /* nonsingular. */ 00056 00057 /* Arguments */ 00058 /* ========= */ 00059 00060 /* UPLO (input) CHARACTER*1 */ 00061 /* = 'U': A is upper triangular; */ 00062 /* = 'L': A is lower triangular. */ 00063 00064 /* TRANS (input) CHARACTER*1 */ 00065 /* Specifies the form of the system of equations: */ 00066 /* = 'N': A * X = B (No transpose) */ 00067 /* = 'T': A**T * X = B (Transpose) */ 00068 /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ 00069 00070 /* DIAG (input) CHARACTER*1 */ 00071 /* = 'N': A is non-unit triangular; */ 00072 /* = 'U': A is unit triangular. */ 00073 00074 /* N (input) INTEGER */ 00075 /* The order of the matrix A. N >= 0. */ 00076 00077 /* NRHS (input) INTEGER */ 00078 /* The number of right hand sides, i.e., the number of columns */ 00079 /* of the matrix B. NRHS >= 0. */ 00080 00081 /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ 00082 /* The upper or lower triangular matrix A, packed columnwise in */ 00083 /* a linear array. The j-th column of A is stored in the array */ 00084 /* AP as follows: */ 00085 /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ 00086 /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ 00087 00088 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00089 /* On entry, the right hand side matrix B. */ 00090 /* On exit, if INFO = 0, the solution matrix X. */ 00091 00092 /* LDB (input) INTEGER */ 00093 /* The leading dimension of the array B. LDB >= max(1,N). */ 00094 00095 /* INFO (output) INTEGER */ 00096 /* = 0: successful exit */ 00097 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00098 /* > 0: if INFO = i, the i-th diagonal element of A is zero, */ 00099 /* indicating that the matrix is singular and the */ 00100 /* solutions X have not been computed. */ 00101 00102 /* ===================================================================== */ 00103 00104 /* .. Parameters .. */ 00105 /* .. */ 00106 /* .. Local Scalars .. */ 00107 /* .. */ 00108 /* .. External Functions .. */ 00109 /* .. */ 00110 /* .. External Subroutines .. */ 00111 /* .. */ 00112 /* .. Intrinsic Functions .. */ 00113 /* .. */ 00114 /* .. Executable Statements .. */ 00115 00116 /* Test the input parameters. */ 00117 00118 /* Parameter adjustments */ 00119 --ap; 00120 b_dim1 = *ldb; 00121 b_offset = 1 + b_dim1; 00122 b -= b_offset; 00123 00124 /* Function Body */ 00125 *info = 0; 00126 upper = lsame_(uplo, "U"); 00127 nounit = lsame_(diag, "N"); 00128 if (! upper && ! lsame_(uplo, "L")) { 00129 *info = -1; 00130 } else if (! lsame_(trans, "N") && ! lsame_(trans, 00131 "T") && ! lsame_(trans, "C")) { 00132 *info = -2; 00133 } else if (! nounit && ! lsame_(diag, "U")) { 00134 *info = -3; 00135 } else if (*n < 0) { 00136 *info = -4; 00137 } else if (*nrhs < 0) { 00138 *info = -5; 00139 } else if (*ldb < max(1,*n)) { 00140 *info = -8; 00141 } 00142 if (*info != 0) { 00143 i__1 = -(*info); 00144 xerbla_("DTPTRS", &i__1); 00145 return 0; 00146 } 00147 00148 /* Quick return if possible */ 00149 00150 if (*n == 0) { 00151 return 0; 00152 } 00153 00154 /* Check for singularity. */ 00155 00156 if (nounit) { 00157 if (upper) { 00158 jc = 1; 00159 i__1 = *n; 00160 for (*info = 1; *info <= i__1; ++(*info)) { 00161 if (ap[jc + *info - 1] == 0.) { 00162 return 0; 00163 } 00164 jc += *info; 00165 /* L10: */ 00166 } 00167 } else { 00168 jc = 1; 00169 i__1 = *n; 00170 for (*info = 1; *info <= i__1; ++(*info)) { 00171 if (ap[jc] == 0.) { 00172 return 0; 00173 } 00174 jc = jc + *n - *info + 1; 00175 /* L20: */ 00176 } 00177 } 00178 } 00179 *info = 0; 00180 00181 /* Solve A * x = b or A' * x = b. */ 00182 00183 i__1 = *nrhs; 00184 for (j = 1; j <= i__1; ++j) { 00185 dtpsv_(uplo, trans, diag, n, &ap[1], &b[j * b_dim1 + 1], &c__1); 00186 /* L30: */ 00187 } 00188 00189 return 0; 00190 00191 /* End of DTPTRS */ 00192 00193 } /* dtptrs_ */