00001 /* dtpt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static doublereal c_b10 = -1.; 00020 00021 /* Subroutine */ int dtpt02_(char *uplo, char *trans, char *diag, integer *n, 00022 integer *nrhs, doublereal *ap, doublereal *x, integer *ldx, 00023 doublereal *b, integer *ldb, doublereal *work, doublereal *resid) 00024 { 00025 /* System generated locals */ 00026 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00027 doublereal d__1, d__2; 00028 00029 /* Local variables */ 00030 integer j; 00031 doublereal eps; 00032 extern logical lsame_(char *, char *); 00033 extern doublereal dasum_(integer *, doublereal *, integer *); 00034 doublereal anorm, bnorm; 00035 extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 00036 doublereal *, integer *), daxpy_(integer *, doublereal *, 00037 doublereal *, integer *, doublereal *, integer *), dtpmv_(char *, 00038 char *, char *, integer *, doublereal *, doublereal *, integer *); 00039 doublereal xnorm; 00040 extern doublereal dlamch_(char *), dlantp_(char *, char *, char *, 00041 integer *, doublereal *, doublereal *); 00042 00043 00044 /* -- LAPACK test routine (version 3.1) -- */ 00045 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00046 /* November 2006 */ 00047 00048 /* .. Scalar Arguments .. */ 00049 /* .. */ 00050 /* .. Array Arguments .. */ 00051 /* .. */ 00052 00053 /* Purpose */ 00054 /* ======= */ 00055 00056 /* DTPT02 computes the residual for the computed solution to a */ 00057 /* triangular system of linear equations A*x = b or A'*x = b when */ 00058 /* the triangular matrix A is stored in packed format. Here A' is the */ 00059 /* transpose of A and x and b are N by NRHS matrices. The test ratio is */ 00060 /* the maximum over the number of right hand sides of */ 00061 /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ 00062 /* where op(A) denotes A or A' and EPS is the machine epsilon. */ 00063 00064 /* Arguments */ 00065 /* ========= */ 00066 00067 /* UPLO (input) CHARACTER*1 */ 00068 /* Specifies whether the matrix A is upper or lower triangular. */ 00069 /* = 'U': Upper triangular */ 00070 /* = 'L': Lower triangular */ 00071 00072 /* TRANS (input) CHARACTER*1 */ 00073 /* Specifies the operation applied to A. */ 00074 /* = 'N': A *x = b (No transpose) */ 00075 /* = 'T': A'*x = b (Transpose) */ 00076 /* = 'C': A'*x = b (Conjugate transpose = Transpose) */ 00077 00078 /* DIAG (input) CHARACTER*1 */ 00079 /* Specifies whether or not the matrix A is unit triangular. */ 00080 /* = 'N': Non-unit triangular */ 00081 /* = 'U': Unit triangular */ 00082 00083 /* N (input) INTEGER */ 00084 /* The order of the matrix A. N >= 0. */ 00085 00086 /* NRHS (input) INTEGER */ 00087 /* The number of right hand sides, i.e., the number of columns */ 00088 /* of the matrices X and B. NRHS >= 0. */ 00089 00090 /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ 00091 /* The upper or lower triangular matrix A, packed columnwise in */ 00092 /* a linear array. The j-th column of A is stored in the array */ 00093 /* AP as follows: */ 00094 /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ 00095 /* if UPLO = 'L', */ 00096 /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ 00097 00098 /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00099 /* The computed solution vectors for the system of linear */ 00100 /* equations. */ 00101 00102 /* LDX (input) INTEGER */ 00103 /* The leading dimension of the array X. LDX >= max(1,N). */ 00104 00105 /* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00106 /* The right hand side vectors for the system of linear */ 00107 /* equations. */ 00108 00109 /* LDB (input) INTEGER */ 00110 /* The leading dimension of the array B. LDB >= max(1,N). */ 00111 00112 /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00113 00114 /* RESID (output) DOUBLE PRECISION */ 00115 /* The maximum over the number of right hand sides of */ 00116 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00117 00118 /* ===================================================================== */ 00119 00120 /* .. Parameters .. */ 00121 /* .. */ 00122 /* .. Local Scalars .. */ 00123 /* .. */ 00124 /* .. External Functions .. */ 00125 /* .. */ 00126 /* .. External Subroutines .. */ 00127 /* .. */ 00128 /* .. Intrinsic Functions .. */ 00129 /* .. */ 00130 /* .. Executable Statements .. */ 00131 00132 /* Quick exit if N = 0 or NRHS = 0 */ 00133 00134 /* Parameter adjustments */ 00135 --ap; 00136 x_dim1 = *ldx; 00137 x_offset = 1 + x_dim1; 00138 x -= x_offset; 00139 b_dim1 = *ldb; 00140 b_offset = 1 + b_dim1; 00141 b -= b_offset; 00142 --work; 00143 00144 /* Function Body */ 00145 if (*n <= 0 || *nrhs <= 0) { 00146 *resid = 0.; 00147 return 0; 00148 } 00149 00150 /* Compute the 1-norm of A or A'. */ 00151 00152 if (lsame_(trans, "N")) { 00153 anorm = dlantp_("1", uplo, diag, n, &ap[1], &work[1]); 00154 } else { 00155 anorm = dlantp_("I", uplo, diag, n, &ap[1], &work[1]); 00156 } 00157 00158 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00159 00160 eps = dlamch_("Epsilon"); 00161 if (anorm <= 0.) { 00162 *resid = 1. / eps; 00163 return 0; 00164 } 00165 00166 /* Compute the maximum over the number of right hand sides of */ 00167 /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ 00168 00169 *resid = 0.; 00170 i__1 = *nrhs; 00171 for (j = 1; j <= i__1; ++j) { 00172 dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); 00173 dtpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1); 00174 daxpy_(n, &c_b10, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); 00175 bnorm = dasum_(n, &work[1], &c__1); 00176 xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1); 00177 if (xnorm <= 0.) { 00178 *resid = 1. / eps; 00179 } else { 00180 /* Computing MAX */ 00181 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00182 *resid = max(d__1,d__2); 00183 } 00184 /* L10: */ 00185 } 00186 00187 return 0; 00188 00189 /* End of DTPT02 */ 00190 00191 } /* dtpt02_ */