dtbt03.c
Go to the documentation of this file.
00001 /* dtbt03.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static integer c__1 = 1;
00019 
00020 /* Subroutine */ int dtbt03_(char *uplo, char *trans, char *diag, integer *n, 
00021         integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal 
00022         *scale, doublereal *cnorm, doublereal *tscal, doublereal *x, integer *
00023         ldx, doublereal *b, integer *ldb, doublereal *work, doublereal *resid)
00024 {
00025     /* System generated locals */
00026     integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1;
00027     doublereal d__1, d__2, d__3;
00028 
00029     /* Local variables */
00030     integer j, ix;
00031     doublereal eps, err;
00032     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
00033             integer *);
00034     extern logical lsame_(char *, char *);
00035     doublereal xscal;
00036     extern /* Subroutine */ int dtbmv_(char *, char *, char *, integer *, 
00037             integer *, doublereal *, integer *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *
00038 , doublereal *, integer *), daxpy_(integer *, doublereal *, 
00039             doublereal *, integer *, doublereal *, integer *);
00040     doublereal tnorm, xnorm;
00041     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
00042     extern doublereal dlamch_(char *);
00043     extern integer idamax_(integer *, doublereal *, integer *);
00044     doublereal bignum, smlnum;
00045 
00046 
00047 /*  -- LAPACK test routine (version 3.1) -- */
00048 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00049 /*     November 2006 */
00050 
00051 /*     .. Scalar Arguments .. */
00052 /*     .. */
00053 /*     .. Array Arguments .. */
00054 /*     .. */
00055 
00056 /*  Purpose */
00057 /*  ======= */
00058 
00059 /*  DTBT03 computes the residual for the solution to a scaled triangular */
00060 /*  system of equations  A*x = s*b  or  A'*x = s*b  when A is a */
00061 /*  triangular band matrix. Here A' is the transpose of A, s is a scalar, */
00062 /*  and x and b are N by NRHS matrices.  The test ratio is the maximum */
00063 /*  over the number of right hand sides of */
00064 /*     norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */
00065 /*  where op(A) denotes A or A' and EPS is the machine epsilon. */
00066 
00067 /*  Arguments */
00068 /*  ========= */
00069 
00070 /*  UPLO    (input) CHARACTER*1 */
00071 /*          Specifies whether the matrix A is upper or lower triangular. */
00072 /*          = 'U':  Upper triangular */
00073 /*          = 'L':  Lower triangular */
00074 
00075 /*  TRANS   (input) CHARACTER*1 */
00076 /*          Specifies the operation applied to A. */
00077 /*          = 'N':  A *x = b  (No transpose) */
00078 /*          = 'T':  A'*x = b  (Transpose) */
00079 /*          = 'C':  A'*x = b  (Conjugate transpose = Transpose) */
00080 
00081 /*  DIAG    (input) CHARACTER*1 */
00082 /*          Specifies whether or not the matrix A is unit triangular. */
00083 /*          = 'N':  Non-unit triangular */
00084 /*          = 'U':  Unit triangular */
00085 
00086 /*  N       (input) INTEGER */
00087 /*          The order of the matrix A.  N >= 0. */
00088 
00089 /*  KD      (input) INTEGER */
00090 /*          The number of superdiagonals or subdiagonals of the */
00091 /*          triangular band matrix A.  KD >= 0. */
00092 
00093 /*  NRHS    (input) INTEGER */
00094 /*          The number of right hand sides, i.e., the number of columns */
00095 /*          of the matrices X and B.  NRHS >= 0. */
00096 
00097 /*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
00098 /*          The upper or lower triangular band matrix A, stored in the */
00099 /*          first kd+1 rows of the array. The j-th column of A is stored */
00100 /*          in the j-th column of the array AB as follows: */
00101 /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
00102 /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
00103 
00104 /*  LDAB    (input) INTEGER */
00105 /*          The leading dimension of the array AB.  LDAB >= KD+1. */
00106 
00107 /*  SCALE   (input) DOUBLE PRECISION */
00108 /*          The scaling factor s used in solving the triangular system. */
00109 
00110 /*  CNORM   (input) DOUBLE PRECISION array, dimension (N) */
00111 /*          The 1-norms of the columns of A, not counting the diagonal. */
00112 
00113 /*  TSCAL   (input) DOUBLE PRECISION */
00114 /*          The scaling factor used in computing the 1-norms in CNORM. */
00115 /*          CNORM actually contains the column norms of TSCAL*A. */
00116 
00117 /*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
00118 /*          The computed solution vectors for the system of linear */
00119 /*          equations. */
00120 
00121 /*  LDX     (input) INTEGER */
00122 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00123 
00124 /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
00125 /*          The right hand side vectors for the system of linear */
00126 /*          equations. */
00127 
00128 /*  LDB     (input) INTEGER */
00129 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00130 
00131 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */
00132 
00133 /*  RESID   (output) DOUBLE PRECISION */
00134 /*          The maximum over the number of right hand sides of */
00135 /*          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */
00136 
00137 /*  ===================================================================== */
00138 
00139 /*     .. Parameters .. */
00140 /*     .. */
00141 /*     .. Local Scalars .. */
00142 /*     .. */
00143 /*     .. External Functions .. */
00144 /*     .. */
00145 /*     .. External Subroutines .. */
00146 /*     .. */
00147 /*     .. Intrinsic Functions .. */
00148 /*     .. */
00149 /*     .. Executable Statements .. */
00150 
00151 /*     Quick exit if N = 0 */
00152 
00153     /* Parameter adjustments */
00154     ab_dim1 = *ldab;
00155     ab_offset = 1 + ab_dim1;
00156     ab -= ab_offset;
00157     --cnorm;
00158     x_dim1 = *ldx;
00159     x_offset = 1 + x_dim1;
00160     x -= x_offset;
00161     b_dim1 = *ldb;
00162     b_offset = 1 + b_dim1;
00163     b -= b_offset;
00164     --work;
00165 
00166     /* Function Body */
00167     if (*n <= 0 || *nrhs <= 0) {
00168         *resid = 0.;
00169         return 0;
00170     }
00171     eps = dlamch_("Epsilon");
00172     smlnum = dlamch_("Safe minimum");
00173     bignum = 1. / smlnum;
00174     dlabad_(&smlnum, &bignum);
00175 
00176 /*     Compute the norm of the triangular matrix A using the column */
00177 /*     norms already computed by DLATBS. */
00178 
00179     tnorm = 0.;
00180     if (lsame_(diag, "N")) {
00181         if (lsame_(uplo, "U")) {
00182             i__1 = *n;
00183             for (j = 1; j <= i__1; ++j) {
00184 /* Computing MAX */
00185                 d__2 = tnorm, d__3 = *tscal * (d__1 = ab[*kd + 1 + j * 
00186                         ab_dim1], abs(d__1)) + cnorm[j];
00187                 tnorm = max(d__2,d__3);
00188 /* L10: */
00189             }
00190         } else {
00191             i__1 = *n;
00192             for (j = 1; j <= i__1; ++j) {
00193 /* Computing MAX */
00194                 d__2 = tnorm, d__3 = *tscal * (d__1 = ab[j * ab_dim1 + 1], 
00195                         abs(d__1)) + cnorm[j];
00196                 tnorm = max(d__2,d__3);
00197 /* L20: */
00198             }
00199         }
00200     } else {
00201         i__1 = *n;
00202         for (j = 1; j <= i__1; ++j) {
00203 /* Computing MAX */
00204             d__1 = tnorm, d__2 = *tscal + cnorm[j];
00205             tnorm = max(d__1,d__2);
00206 /* L30: */
00207         }
00208     }
00209 
00210 /*     Compute the maximum over the number of right hand sides of */
00211 /*        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */
00212 
00213     *resid = 0.;
00214     i__1 = *nrhs;
00215     for (j = 1; j <= i__1; ++j) {
00216         dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
00217         ix = idamax_(n, &work[1], &c__1);
00218 /* Computing MAX */
00219         d__2 = 1., d__3 = (d__1 = x[ix + j * x_dim1], abs(d__1));
00220         xnorm = max(d__2,d__3);
00221         xscal = 1. / xnorm / (doublereal) (*kd + 1);
00222         dscal_(n, &xscal, &work[1], &c__1);
00223         dtbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], &
00224                 c__1);
00225         d__1 = -(*scale) * xscal;
00226         daxpy_(n, &d__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
00227         ix = idamax_(n, &work[1], &c__1);
00228         err = *tscal * (d__1 = work[ix], abs(d__1));
00229         ix = idamax_(n, &x[j * x_dim1 + 1], &c__1);
00230         xnorm = (d__1 = x[ix + j * x_dim1], abs(d__1));
00231         if (err * smlnum <= xnorm) {
00232             if (xnorm > 0.) {
00233                 err /= xnorm;
00234             }
00235         } else {
00236             if (err > 0.) {
00237                 err = 1. / eps;
00238             }
00239         }
00240         if (err * smlnum <= tnorm) {
00241             if (tnorm > 0.) {
00242                 err /= tnorm;
00243             }
00244         } else {
00245             if (err > 0.) {
00246                 err = 1. / eps;
00247             }
00248         }
00249         *resid = max(*resid,err);
00250 /* L40: */
00251     }
00252 
00253     return 0;
00254 
00255 /*     End of DTBT03 */
00256 
00257 } /* dtbt03_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:49