dsygvd.c
Go to the documentation of this file.
00001 /* dsygvd.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublereal c_b11 = 1.;
00019 
00020 /* Subroutine */ int dsygvd_(integer *itype, char *jobz, char *uplo, integer *
00021         n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 
00022         doublereal *w, doublereal *work, integer *lwork, integer *iwork, 
00023         integer *liwork, integer *info)
00024 {
00025     /* System generated locals */
00026     integer a_dim1, a_offset, b_dim1, b_offset, i__1;
00027     doublereal d__1, d__2;
00028 
00029     /* Local variables */
00030     integer lopt;
00031     extern logical lsame_(char *, char *);
00032     extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 
00033             integer *, integer *, doublereal *, doublereal *, integer *, 
00034             doublereal *, integer *);
00035     integer lwmin;
00036     char trans[1];
00037     integer liopt;
00038     extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
00039             integer *, integer *, doublereal *, doublereal *, integer *, 
00040             doublereal *, integer *);
00041     logical upper, wantz;
00042     extern /* Subroutine */ int xerbla_(char *, integer *), dpotrf_(
00043             char *, integer *, doublereal *, integer *, integer *);
00044     integer liwmin;
00045     extern /* Subroutine */ int dsyevd_(char *, char *, integer *, doublereal 
00046             *, integer *, doublereal *, doublereal *, integer *, integer *, 
00047             integer *, integer *), dsygst_(integer *, char *, 
00048             integer *, doublereal *, integer *, doublereal *, integer *, 
00049             integer *);
00050     logical lquery;
00051 
00052 
00053 /*  -- LAPACK driver routine (version 3.2) -- */
00054 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00055 /*     November 2006 */
00056 
00057 /*     .. Scalar Arguments .. */
00058 /*     .. */
00059 /*     .. Array Arguments .. */
00060 /*     .. */
00061 
00062 /*  Purpose */
00063 /*  ======= */
00064 
00065 /*  DSYGVD computes all the eigenvalues, and optionally, the eigenvectors */
00066 /*  of a real generalized symmetric-definite eigenproblem, of the form */
00067 /*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and */
00068 /*  B are assumed to be symmetric and B is also positive definite. */
00069 /*  If eigenvectors are desired, it uses a divide and conquer algorithm. */
00070 
00071 /*  The divide and conquer algorithm makes very mild assumptions about */
00072 /*  floating point arithmetic. It will work on machines with a guard */
00073 /*  digit in add/subtract, or on those binary machines without guard */
00074 /*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
00075 /*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
00076 /*  without guard digits, but we know of none. */
00077 
00078 /*  Arguments */
00079 /*  ========= */
00080 
00081 /*  ITYPE   (input) INTEGER */
00082 /*          Specifies the problem type to be solved: */
00083 /*          = 1:  A*x = (lambda)*B*x */
00084 /*          = 2:  A*B*x = (lambda)*x */
00085 /*          = 3:  B*A*x = (lambda)*x */
00086 
00087 /*  JOBZ    (input) CHARACTER*1 */
00088 /*          = 'N':  Compute eigenvalues only; */
00089 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00090 
00091 /*  UPLO    (input) CHARACTER*1 */
00092 /*          = 'U':  Upper triangles of A and B are stored; */
00093 /*          = 'L':  Lower triangles of A and B are stored. */
00094 
00095 /*  N       (input) INTEGER */
00096 /*          The order of the matrices A and B.  N >= 0. */
00097 
00098 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
00099 /*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
00100 /*          leading N-by-N upper triangular part of A contains the */
00101 /*          upper triangular part of the matrix A.  If UPLO = 'L', */
00102 /*          the leading N-by-N lower triangular part of A contains */
00103 /*          the lower triangular part of the matrix A. */
00104 
00105 /*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
00106 /*          matrix Z of eigenvectors.  The eigenvectors are normalized */
00107 /*          as follows: */
00108 /*          if ITYPE = 1 or 2, Z**T*B*Z = I; */
00109 /*          if ITYPE = 3, Z**T*inv(B)*Z = I. */
00110 /*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
00111 /*          or the lower triangle (if UPLO='L') of A, including the */
00112 /*          diagonal, is destroyed. */
00113 
00114 /*  LDA     (input) INTEGER */
00115 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00116 
00117 /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
00118 /*          On entry, the symmetric matrix B.  If UPLO = 'U', the */
00119 /*          leading N-by-N upper triangular part of B contains the */
00120 /*          upper triangular part of the matrix B.  If UPLO = 'L', */
00121 /*          the leading N-by-N lower triangular part of B contains */
00122 /*          the lower triangular part of the matrix B. */
00123 
00124 /*          On exit, if INFO <= N, the part of B containing the matrix is */
00125 /*          overwritten by the triangular factor U or L from the Cholesky */
00126 /*          factorization B = U**T*U or B = L*L**T. */
00127 
00128 /*  LDB     (input) INTEGER */
00129 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00130 
00131 /*  W       (output) DOUBLE PRECISION array, dimension (N) */
00132 /*          If INFO = 0, the eigenvalues in ascending order. */
00133 
00134 /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
00135 /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
00136 
00137 /*  LWORK   (input) INTEGER */
00138 /*          The dimension of the array WORK. */
00139 /*          If N <= 1,               LWORK >= 1. */
00140 /*          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1. */
00141 /*          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. */
00142 
00143 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00144 /*          only calculates the optimal sizes of the WORK and IWORK */
00145 /*          arrays, returns these values as the first entries of the WORK */
00146 /*          and IWORK arrays, and no error message related to LWORK or */
00147 /*          LIWORK is issued by XERBLA. */
00148 
00149 /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
00150 /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
00151 
00152 /*  LIWORK  (input) INTEGER */
00153 /*          The dimension of the array IWORK. */
00154 /*          If N <= 1,                LIWORK >= 1. */
00155 /*          If JOBZ  = 'N' and N > 1, LIWORK >= 1. */
00156 /*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N. */
00157 
00158 /*          If LIWORK = -1, then a workspace query is assumed; the */
00159 /*          routine only calculates the optimal sizes of the WORK and */
00160 /*          IWORK arrays, returns these values as the first entries of */
00161 /*          the WORK and IWORK arrays, and no error message related to */
00162 /*          LWORK or LIWORK is issued by XERBLA. */
00163 
00164 /*  INFO    (output) INTEGER */
00165 /*          = 0:  successful exit */
00166 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00167 /*          > 0:  DPOTRF or DSYEVD returned an error code: */
00168 /*             <= N:  if INFO = i and JOBZ = 'N', then the algorithm */
00169 /*                    failed to converge; i off-diagonal elements of an */
00170 /*                    intermediate tridiagonal form did not converge to */
00171 /*                    zero; */
00172 /*                    if INFO = i and JOBZ = 'V', then the algorithm */
00173 /*                    failed to compute an eigenvalue while working on */
00174 /*                    the submatrix lying in rows and columns INFO/(N+1) */
00175 /*                    through mod(INFO,N+1); */
00176 /*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
00177 /*                    minor of order i of B is not positive definite. */
00178 /*                    The factorization of B could not be completed and */
00179 /*                    no eigenvalues or eigenvectors were computed. */
00180 
00181 /*  Further Details */
00182 /*  =============== */
00183 
00184 /*  Based on contributions by */
00185 /*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
00186 
00187 /*  Modified so that no backsubstitution is performed if DSYEVD fails to */
00188 /*  converge (NEIG in old code could be greater than N causing out of */
00189 /*  bounds reference to A - reported by Ralf Meyer).  Also corrected the */
00190 /*  description of INFO and the test on ITYPE. Sven, 16 Feb 05. */
00191 /*  ===================================================================== */
00192 
00193 /*     .. Parameters .. */
00194 /*     .. */
00195 /*     .. Local Scalars .. */
00196 /*     .. */
00197 /*     .. External Functions .. */
00198 /*     .. */
00199 /*     .. External Subroutines .. */
00200 /*     .. */
00201 /*     .. Intrinsic Functions .. */
00202 /*     .. */
00203 /*     .. Executable Statements .. */
00204 
00205 /*     Test the input parameters. */
00206 
00207     /* Parameter adjustments */
00208     a_dim1 = *lda;
00209     a_offset = 1 + a_dim1;
00210     a -= a_offset;
00211     b_dim1 = *ldb;
00212     b_offset = 1 + b_dim1;
00213     b -= b_offset;
00214     --w;
00215     --work;
00216     --iwork;
00217 
00218     /* Function Body */
00219     wantz = lsame_(jobz, "V");
00220     upper = lsame_(uplo, "U");
00221     lquery = *lwork == -1 || *liwork == -1;
00222 
00223     *info = 0;
00224     if (*n <= 1) {
00225         liwmin = 1;
00226         lwmin = 1;
00227     } else if (wantz) {
00228         liwmin = *n * 5 + 3;
00229 /* Computing 2nd power */
00230         i__1 = *n;
00231         lwmin = *n * 6 + 1 + (i__1 * i__1 << 1);
00232     } else {
00233         liwmin = 1;
00234         lwmin = (*n << 1) + 1;
00235     }
00236     lopt = lwmin;
00237     liopt = liwmin;
00238     if (*itype < 1 || *itype > 3) {
00239         *info = -1;
00240     } else if (! (wantz || lsame_(jobz, "N"))) {
00241         *info = -2;
00242     } else if (! (upper || lsame_(uplo, "L"))) {
00243         *info = -3;
00244     } else if (*n < 0) {
00245         *info = -4;
00246     } else if (*lda < max(1,*n)) {
00247         *info = -6;
00248     } else if (*ldb < max(1,*n)) {
00249         *info = -8;
00250     }
00251 
00252     if (*info == 0) {
00253         work[1] = (doublereal) lopt;
00254         iwork[1] = liopt;
00255 
00256         if (*lwork < lwmin && ! lquery) {
00257             *info = -11;
00258         } else if (*liwork < liwmin && ! lquery) {
00259             *info = -13;
00260         }
00261     }
00262 
00263     if (*info != 0) {
00264         i__1 = -(*info);
00265         xerbla_("DSYGVD", &i__1);
00266         return 0;
00267     } else if (lquery) {
00268         return 0;
00269     }
00270 
00271 /*     Quick return if possible */
00272 
00273     if (*n == 0) {
00274         return 0;
00275     }
00276 
00277 /*     Form a Cholesky factorization of B. */
00278 
00279     dpotrf_(uplo, n, &b[b_offset], ldb, info);
00280     if (*info != 0) {
00281         *info = *n + *info;
00282         return 0;
00283     }
00284 
00285 /*     Transform problem to standard eigenvalue problem and solve. */
00286 
00287     dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
00288     dsyevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &iwork[
00289             1], liwork, info);
00290 /* Computing MAX */
00291     d__1 = (doublereal) lopt;
00292     lopt = (integer) max(d__1,work[1]);
00293 /* Computing MAX */
00294     d__1 = (doublereal) liopt, d__2 = (doublereal) iwork[1];
00295     liopt = (integer) max(d__1,d__2);
00296 
00297     if (wantz && *info == 0) {
00298 
00299 /*        Backtransform eigenvectors to the original problem. */
00300 
00301         if (*itype == 1 || *itype == 2) {
00302 
00303 /*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
00304 /*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
00305 
00306             if (upper) {
00307                 *(unsigned char *)trans = 'N';
00308             } else {
00309                 *(unsigned char *)trans = 'T';
00310             }
00311 
00312             dtrsm_("Left", uplo, trans, "Non-unit", n, n, &c_b11, &b[b_offset]
00313 , ldb, &a[a_offset], lda);
00314 
00315         } else if (*itype == 3) {
00316 
00317 /*           For B*A*x=(lambda)*x; */
00318 /*           backtransform eigenvectors: x = L*y or U'*y */
00319 
00320             if (upper) {
00321                 *(unsigned char *)trans = 'T';
00322             } else {
00323                 *(unsigned char *)trans = 'N';
00324             }
00325 
00326             dtrmm_("Left", uplo, trans, "Non-unit", n, n, &c_b11, &b[b_offset]
00327 , ldb, &a[a_offset], lda);
00328         }
00329     }
00330 
00331     work[1] = (doublereal) lopt;
00332     iwork[1] = liopt;
00333 
00334     return 0;
00335 
00336 /*     End of DSYGVD */
00337 
00338 } /* dsygvd_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:49