dstegr.c
Go to the documentation of this file.
00001 /* dstegr.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dstegr_(char *jobz, char *range, integer *n, doublereal *
00017         d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 
00018         integer *iu, doublereal *abstol, integer *m, doublereal *w, 
00019         doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 
00020         integer *lwork, integer *iwork, integer *liwork, integer *info)
00021 {
00022     /* System generated locals */
00023     integer z_dim1, z_offset;
00024 
00025     /* Local variables */
00026     extern /* Subroutine */ int dstemr_(char *, char *, integer *, doublereal 
00027             *, doublereal *, doublereal *, doublereal *, integer *, integer *, 
00028              integer *, doublereal *, doublereal *, integer *, integer *, 
00029             integer *, logical *, doublereal *, integer *, integer *, integer 
00030             *, integer *);
00031     logical tryrac;
00032 
00033 
00034 
00035 /*  -- LAPACK computational routine (version 3.2) -- */
00036 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00037 /*     November 2006 */
00038 
00039 /*     .. Scalar Arguments .. */
00040 /*     .. */
00041 /*     .. Array Arguments .. */
00042 /*     .. */
00043 
00044 /*  Purpose */
00045 /*  ======= */
00046 
00047 /*  DSTEGR computes selected eigenvalues and, optionally, eigenvectors */
00048 /*  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
00049 /*  a well defined set of pairwise different real eigenvalues, the corresponding */
00050 /*  real eigenvectors are pairwise orthogonal. */
00051 
00052 /*  The spectrum may be computed either completely or partially by specifying */
00053 /*  either an interval (VL,VU] or a range of indices IL:IU for the desired */
00054 /*  eigenvalues. */
00055 
00056 /*  DSTEGR is a compatability wrapper around the improved DSTEMR routine. */
00057 /*  See DSTEMR for further details. */
00058 
00059 /*  One important change is that the ABSTOL parameter no longer provides any */
00060 /*  benefit and hence is no longer used. */
00061 
00062 /*  Note : DSTEGR and DSTEMR work only on machines which follow */
00063 /*  IEEE-754 floating-point standard in their handling of infinities and */
00064 /*  NaNs.  Normal execution may create these exceptiona values and hence */
00065 /*  may abort due to a floating point exception in environments which */
00066 /*  do not conform to the IEEE-754 standard. */
00067 
00068 /*  Arguments */
00069 /*  ========= */
00070 
00071 /*  JOBZ    (input) CHARACTER*1 */
00072 /*          = 'N':  Compute eigenvalues only; */
00073 /*          = 'V':  Compute eigenvalues and eigenvectors. */
00074 
00075 /*  RANGE   (input) CHARACTER*1 */
00076 /*          = 'A': all eigenvalues will be found. */
00077 /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
00078 /*                 will be found. */
00079 /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
00080 
00081 /*  N       (input) INTEGER */
00082 /*          The order of the matrix.  N >= 0. */
00083 
00084 /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
00085 /*          On entry, the N diagonal elements of the tridiagonal matrix */
00086 /*          T. On exit, D is overwritten. */
00087 
00088 /*  E       (input/output) DOUBLE PRECISION array, dimension (N) */
00089 /*          On entry, the (N-1) subdiagonal elements of the tridiagonal */
00090 /*          matrix T in elements 1 to N-1 of E. E(N) need not be set on */
00091 /*          input, but is used internally as workspace. */
00092 /*          On exit, E is overwritten. */
00093 
00094 /*  VL      (input) DOUBLE PRECISION */
00095 /*  VU      (input) DOUBLE PRECISION */
00096 /*          If RANGE='V', the lower and upper bounds of the interval to */
00097 /*          be searched for eigenvalues. VL < VU. */
00098 /*          Not referenced if RANGE = 'A' or 'I'. */
00099 
00100 /*  IL      (input) INTEGER */
00101 /*  IU      (input) INTEGER */
00102 /*          If RANGE='I', the indices (in ascending order) of the */
00103 /*          smallest and largest eigenvalues to be returned. */
00104 /*          1 <= IL <= IU <= N, if N > 0. */
00105 /*          Not referenced if RANGE = 'A' or 'V'. */
00106 
00107 /*  ABSTOL  (input) DOUBLE PRECISION */
00108 /*          Unused.  Was the absolute error tolerance for the */
00109 /*          eigenvalues/eigenvectors in previous versions. */
00110 
00111 /*  M       (output) INTEGER */
00112 /*          The total number of eigenvalues found.  0 <= M <= N. */
00113 /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
00114 
00115 /*  W       (output) DOUBLE PRECISION array, dimension (N) */
00116 /*          The first M elements contain the selected eigenvalues in */
00117 /*          ascending order. */
00118 
00119 /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
00120 /*          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
00121 /*          contain the orthonormal eigenvectors of the matrix T */
00122 /*          corresponding to the selected eigenvalues, with the i-th */
00123 /*          column of Z holding the eigenvector associated with W(i). */
00124 /*          If JOBZ = 'N', then Z is not referenced. */
00125 /*          Note: the user must ensure that at least max(1,M) columns are */
00126 /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
00127 /*          is not known in advance and an upper bound must be used. */
00128 /*          Supplying N columns is always safe. */
00129 
00130 /*  LDZ     (input) INTEGER */
00131 /*          The leading dimension of the array Z.  LDZ >= 1, and if */
00132 /*          JOBZ = 'V', then LDZ >= max(1,N). */
00133 
00134 /*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) */
00135 /*          The support of the eigenvectors in Z, i.e., the indices */
00136 /*          indicating the nonzero elements in Z. The i-th computed eigenvector */
00137 /*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
00138 /*          ISUPPZ( 2*i ). This is relevant in the case when the matrix */
00139 /*          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
00140 
00141 /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
00142 /*          On exit, if INFO = 0, WORK(1) returns the optimal */
00143 /*          (and minimal) LWORK. */
00144 
00145 /*  LWORK   (input) INTEGER */
00146 /*          The dimension of the array WORK. LWORK >= max(1,18*N) */
00147 /*          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. */
00148 /*          If LWORK = -1, then a workspace query is assumed; the routine */
00149 /*          only calculates the optimal size of the WORK array, returns */
00150 /*          this value as the first entry of the WORK array, and no error */
00151 /*          message related to LWORK is issued by XERBLA. */
00152 
00153 /*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK) */
00154 /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
00155 
00156 /*  LIWORK  (input) INTEGER */
00157 /*          The dimension of the array IWORK.  LIWORK >= max(1,10*N) */
00158 /*          if the eigenvectors are desired, and LIWORK >= max(1,8*N) */
00159 /*          if only the eigenvalues are to be computed. */
00160 /*          If LIWORK = -1, then a workspace query is assumed; the */
00161 /*          routine only calculates the optimal size of the IWORK array, */
00162 /*          returns this value as the first entry of the IWORK array, and */
00163 /*          no error message related to LIWORK is issued by XERBLA. */
00164 
00165 /*  INFO    (output) INTEGER */
00166 /*          On exit, INFO */
00167 /*          = 0:  successful exit */
00168 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00169 /*          > 0:  if INFO = 1X, internal error in DLARRE, */
00170 /*                if INFO = 2X, internal error in DLARRV. */
00171 /*                Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
00172 /*                the nonzero error code returned by DLARRE or */
00173 /*                DLARRV, respectively. */
00174 
00175 /*  Further Details */
00176 /*  =============== */
00177 
00178 /*  Based on contributions by */
00179 /*     Inderjit Dhillon, IBM Almaden, USA */
00180 /*     Osni Marques, LBNL/NERSC, USA */
00181 /*     Christof Voemel, LBNL/NERSC, USA */
00182 
00183 /*  ===================================================================== */
00184 
00185 /*     .. Local Scalars .. */
00186 /*     .. */
00187 /*     .. External Subroutines .. */
00188 /*     .. */
00189 /*     .. Executable Statements .. */
00190     /* Parameter adjustments */
00191     --d__;
00192     --e;
00193     --w;
00194     z_dim1 = *ldz;
00195     z_offset = 1 + z_dim1;
00196     z__ -= z_offset;
00197     --isuppz;
00198     --work;
00199     --iwork;
00200 
00201     /* Function Body */
00202     *info = 0;
00203     tryrac = FALSE_;
00204     dstemr_(jobz, range, n, &d__[1], &e[1], vl, vu, il, iu, m, &w[1], &z__[
00205             z_offset], ldz, n, &isuppz[1], &tryrac, &work[1], lwork, &iwork[1]
00206 , liwork, info);
00207 
00208 /*     End of DSTEGR */
00209 
00210     return 0;
00211 } /* dstegr_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:49