00001 /* dspevd.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dspevd_(char *jobz, char *uplo, integer *n, doublereal * 00021 ap, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 00022 integer *lwork, integer *iwork, integer *liwork, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer z_dim1, z_offset, i__1; 00026 doublereal d__1; 00027 00028 /* Builtin functions */ 00029 double sqrt(doublereal); 00030 00031 /* Local variables */ 00032 doublereal eps; 00033 integer inde; 00034 doublereal anrm, rmin, rmax; 00035 extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 00036 integer *); 00037 doublereal sigma; 00038 extern logical lsame_(char *, char *); 00039 integer iinfo, lwmin; 00040 logical wantz; 00041 extern doublereal dlamch_(char *); 00042 integer iscale; 00043 extern /* Subroutine */ int dstedc_(char *, integer *, doublereal *, 00044 doublereal *, doublereal *, integer *, doublereal *, integer *, 00045 integer *, integer *, integer *); 00046 doublereal safmin; 00047 extern /* Subroutine */ int xerbla_(char *, integer *); 00048 doublereal bignum; 00049 extern doublereal dlansp_(char *, char *, integer *, doublereal *, 00050 doublereal *); 00051 integer indtau; 00052 extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 00053 integer *); 00054 integer indwrk, liwmin; 00055 extern /* Subroutine */ int dsptrd_(char *, integer *, doublereal *, 00056 doublereal *, doublereal *, doublereal *, integer *), 00057 dopmtr_(char *, char *, char *, integer *, integer *, doublereal * 00058 , doublereal *, doublereal *, integer *, doublereal *, integer *); 00059 integer llwork; 00060 doublereal smlnum; 00061 logical lquery; 00062 00063 00064 /* -- LAPACK driver routine (version 3.2) -- */ 00065 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00066 /* November 2006 */ 00067 00068 /* .. Scalar Arguments .. */ 00069 /* .. */ 00070 /* .. Array Arguments .. */ 00071 /* .. */ 00072 00073 /* Purpose */ 00074 /* ======= */ 00075 00076 /* DSPEVD computes all the eigenvalues and, optionally, eigenvectors */ 00077 /* of a real symmetric matrix A in packed storage. If eigenvectors are */ 00078 /* desired, it uses a divide and conquer algorithm. */ 00079 00080 /* The divide and conquer algorithm makes very mild assumptions about */ 00081 /* floating point arithmetic. It will work on machines with a guard */ 00082 /* digit in add/subtract, or on those binary machines without guard */ 00083 /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ 00084 /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ 00085 /* without guard digits, but we know of none. */ 00086 00087 /* Arguments */ 00088 /* ========= */ 00089 00090 /* JOBZ (input) CHARACTER*1 */ 00091 /* = 'N': Compute eigenvalues only; */ 00092 /* = 'V': Compute eigenvalues and eigenvectors. */ 00093 00094 /* UPLO (input) CHARACTER*1 */ 00095 /* = 'U': Upper triangle of A is stored; */ 00096 /* = 'L': Lower triangle of A is stored. */ 00097 00098 /* N (input) INTEGER */ 00099 /* The order of the matrix A. N >= 0. */ 00100 00101 /* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ 00102 /* On entry, the upper or lower triangle of the symmetric matrix */ 00103 /* A, packed columnwise in a linear array. The j-th column of A */ 00104 /* is stored in the array AP as follows: */ 00105 /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ 00106 /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ 00107 00108 /* On exit, AP is overwritten by values generated during the */ 00109 /* reduction to tridiagonal form. If UPLO = 'U', the diagonal */ 00110 /* and first superdiagonal of the tridiagonal matrix T overwrite */ 00111 /* the corresponding elements of A, and if UPLO = 'L', the */ 00112 /* diagonal and first subdiagonal of T overwrite the */ 00113 /* corresponding elements of A. */ 00114 00115 /* W (output) DOUBLE PRECISION array, dimension (N) */ 00116 /* If INFO = 0, the eigenvalues in ascending order. */ 00117 00118 /* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */ 00119 /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ 00120 /* eigenvectors of the matrix A, with the i-th column of Z */ 00121 /* holding the eigenvector associated with W(i). */ 00122 /* If JOBZ = 'N', then Z is not referenced. */ 00123 00124 /* LDZ (input) INTEGER */ 00125 /* The leading dimension of the array Z. LDZ >= 1, and if */ 00126 /* JOBZ = 'V', LDZ >= max(1,N). */ 00127 00128 /* WORK (workspace/output) DOUBLE PRECISION array, */ 00129 /* dimension (LWORK) */ 00130 /* On exit, if INFO = 0, WORK(1) returns the required LWORK. */ 00131 00132 /* LWORK (input) INTEGER */ 00133 /* The dimension of the array WORK. */ 00134 /* If N <= 1, LWORK must be at least 1. */ 00135 /* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. */ 00136 /* If JOBZ = 'V' and N > 1, LWORK must be at least */ 00137 /* 1 + 6*N + N**2. */ 00138 00139 /* If LWORK = -1, then a workspace query is assumed; the routine */ 00140 /* only calculates the required sizes of the WORK and IWORK */ 00141 /* arrays, returns these values as the first entries of the WORK */ 00142 /* and IWORK arrays, and no error message related to LWORK or */ 00143 /* LIWORK is issued by XERBLA. */ 00144 00145 /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ 00146 /* On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */ 00147 00148 /* LIWORK (input) INTEGER */ 00149 /* The dimension of the array IWORK. */ 00150 /* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */ 00151 /* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */ 00152 00153 /* If LIWORK = -1, then a workspace query is assumed; the */ 00154 /* routine only calculates the required sizes of the WORK and */ 00155 /* IWORK arrays, returns these values as the first entries of */ 00156 /* the WORK and IWORK arrays, and no error message related to */ 00157 /* LWORK or LIWORK is issued by XERBLA. */ 00158 00159 /* INFO (output) INTEGER */ 00160 /* = 0: successful exit */ 00161 /* < 0: if INFO = -i, the i-th argument had an illegal value. */ 00162 /* > 0: if INFO = i, the algorithm failed to converge; i */ 00163 /* off-diagonal elements of an intermediate tridiagonal */ 00164 /* form did not converge to zero. */ 00165 00166 /* ===================================================================== */ 00167 00168 /* .. Parameters .. */ 00169 /* .. */ 00170 /* .. Local Scalars .. */ 00171 /* .. */ 00172 /* .. External Functions .. */ 00173 /* .. */ 00174 /* .. External Subroutines .. */ 00175 /* .. */ 00176 /* .. Intrinsic Functions .. */ 00177 /* .. */ 00178 /* .. Executable Statements .. */ 00179 00180 /* Test the input parameters. */ 00181 00182 /* Parameter adjustments */ 00183 --ap; 00184 --w; 00185 z_dim1 = *ldz; 00186 z_offset = 1 + z_dim1; 00187 z__ -= z_offset; 00188 --work; 00189 --iwork; 00190 00191 /* Function Body */ 00192 wantz = lsame_(jobz, "V"); 00193 lquery = *lwork == -1 || *liwork == -1; 00194 00195 *info = 0; 00196 if (! (wantz || lsame_(jobz, "N"))) { 00197 *info = -1; 00198 } else if (! (lsame_(uplo, "U") || lsame_(uplo, 00199 "L"))) { 00200 *info = -2; 00201 } else if (*n < 0) { 00202 *info = -3; 00203 } else if (*ldz < 1 || wantz && *ldz < *n) { 00204 *info = -7; 00205 } 00206 00207 if (*info == 0) { 00208 if (*n <= 1) { 00209 liwmin = 1; 00210 lwmin = 1; 00211 } else { 00212 if (wantz) { 00213 liwmin = *n * 5 + 3; 00214 /* Computing 2nd power */ 00215 i__1 = *n; 00216 lwmin = *n * 6 + 1 + i__1 * i__1; 00217 } else { 00218 liwmin = 1; 00219 lwmin = *n << 1; 00220 } 00221 } 00222 iwork[1] = liwmin; 00223 work[1] = (doublereal) lwmin; 00224 00225 if (*lwork < lwmin && ! lquery) { 00226 *info = -9; 00227 } else if (*liwork < liwmin && ! lquery) { 00228 *info = -11; 00229 } 00230 } 00231 00232 if (*info != 0) { 00233 i__1 = -(*info); 00234 xerbla_("DSPEVD", &i__1); 00235 return 0; 00236 } else if (lquery) { 00237 return 0; 00238 } 00239 00240 /* Quick return if possible */ 00241 00242 if (*n == 0) { 00243 return 0; 00244 } 00245 00246 if (*n == 1) { 00247 w[1] = ap[1]; 00248 if (wantz) { 00249 z__[z_dim1 + 1] = 1.; 00250 } 00251 return 0; 00252 } 00253 00254 /* Get machine constants. */ 00255 00256 safmin = dlamch_("Safe minimum"); 00257 eps = dlamch_("Precision"); 00258 smlnum = safmin / eps; 00259 bignum = 1. / smlnum; 00260 rmin = sqrt(smlnum); 00261 rmax = sqrt(bignum); 00262 00263 /* Scale matrix to allowable range, if necessary. */ 00264 00265 anrm = dlansp_("M", uplo, n, &ap[1], &work[1]); 00266 iscale = 0; 00267 if (anrm > 0. && anrm < rmin) { 00268 iscale = 1; 00269 sigma = rmin / anrm; 00270 } else if (anrm > rmax) { 00271 iscale = 1; 00272 sigma = rmax / anrm; 00273 } 00274 if (iscale == 1) { 00275 i__1 = *n * (*n + 1) / 2; 00276 dscal_(&i__1, &sigma, &ap[1], &c__1); 00277 } 00278 00279 /* Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */ 00280 00281 inde = 1; 00282 indtau = inde + *n; 00283 dsptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo); 00284 00285 /* For eigenvalues only, call DSTERF. For eigenvectors, first call */ 00286 /* DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */ 00287 /* tridiagonal matrix, then call DOPMTR to multiply it by the */ 00288 /* Householder transformations represented in AP. */ 00289 00290 if (! wantz) { 00291 dsterf_(n, &w[1], &work[inde], info); 00292 } else { 00293 indwrk = indtau + *n; 00294 llwork = *lwork - indwrk + 1; 00295 dstedc_("I", n, &w[1], &work[inde], &z__[z_offset], ldz, &work[indwrk] 00296 , &llwork, &iwork[1], liwork, info); 00297 dopmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], 00298 ldz, &work[indwrk], &iinfo); 00299 } 00300 00301 /* If matrix was scaled, then rescale eigenvalues appropriately. */ 00302 00303 if (iscale == 1) { 00304 d__1 = 1. / sigma; 00305 dscal_(n, &d__1, &w[1], &c__1); 00306 } 00307 00308 work[1] = (doublereal) lwmin; 00309 iwork[1] = liwmin; 00310 return 0; 00311 00312 /* End of DSPEVD */ 00313 00314 } /* dspevd_ */