00001 /* dspcon.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 00020 /* Subroutine */ int dspcon_(char *uplo, integer *n, doublereal *ap, integer * 00021 ipiv, doublereal *anorm, doublereal *rcond, doublereal *work, integer 00022 *iwork, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer i__1; 00026 00027 /* Local variables */ 00028 integer i__, ip, kase; 00029 extern logical lsame_(char *, char *); 00030 integer isave[3]; 00031 logical upper; 00032 extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, 00033 integer *, doublereal *, integer *, integer *), xerbla_(char *, 00034 integer *); 00035 doublereal ainvnm; 00036 extern /* Subroutine */ int dsptrs_(char *, integer *, integer *, 00037 doublereal *, integer *, doublereal *, integer *, integer *); 00038 00039 00040 /* -- LAPACK routine (version 3.2) -- */ 00041 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00042 /* November 2006 */ 00043 00044 /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */ 00045 00046 /* .. Scalar Arguments .. */ 00047 /* .. */ 00048 /* .. Array Arguments .. */ 00049 /* .. */ 00050 00051 /* Purpose */ 00052 /* ======= */ 00053 00054 /* DSPCON estimates the reciprocal of the condition number (in the */ 00055 /* 1-norm) of a real symmetric packed matrix A using the factorization */ 00056 /* A = U*D*U**T or A = L*D*L**T computed by DSPTRF. */ 00057 00058 /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ 00059 /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ 00060 00061 /* Arguments */ 00062 /* ========= */ 00063 00064 /* UPLO (input) CHARACTER*1 */ 00065 /* Specifies whether the details of the factorization are stored */ 00066 /* as an upper or lower triangular matrix. */ 00067 /* = 'U': Upper triangular, form is A = U*D*U**T; */ 00068 /* = 'L': Lower triangular, form is A = L*D*L**T. */ 00069 00070 /* N (input) INTEGER */ 00071 /* The order of the matrix A. N >= 0. */ 00072 00073 /* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ 00074 /* The block diagonal matrix D and the multipliers used to */ 00075 /* obtain the factor U or L as computed by DSPTRF, stored as a */ 00076 /* packed triangular matrix. */ 00077 00078 /* IPIV (input) INTEGER array, dimension (N) */ 00079 /* Details of the interchanges and the block structure of D */ 00080 /* as determined by DSPTRF. */ 00081 00082 /* ANORM (input) DOUBLE PRECISION */ 00083 /* The 1-norm of the original matrix A. */ 00084 00085 /* RCOND (output) DOUBLE PRECISION */ 00086 /* The reciprocal of the condition number of the matrix A, */ 00087 /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ 00088 /* estimate of the 1-norm of inv(A) computed in this routine. */ 00089 00090 /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ 00091 00092 /* IWORK (workspace) INTEGER array, dimension (N) */ 00093 00094 /* INFO (output) INTEGER */ 00095 /* = 0: successful exit */ 00096 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00097 00098 /* ===================================================================== */ 00099 00100 /* .. Parameters .. */ 00101 /* .. */ 00102 /* .. Local Scalars .. */ 00103 /* .. */ 00104 /* .. Local Arrays .. */ 00105 /* .. */ 00106 /* .. External Functions .. */ 00107 /* .. */ 00108 /* .. External Subroutines .. */ 00109 /* .. */ 00110 /* .. Executable Statements .. */ 00111 00112 /* Test the input parameters. */ 00113 00114 /* Parameter adjustments */ 00115 --iwork; 00116 --work; 00117 --ipiv; 00118 --ap; 00119 00120 /* Function Body */ 00121 *info = 0; 00122 upper = lsame_(uplo, "U"); 00123 if (! upper && ! lsame_(uplo, "L")) { 00124 *info = -1; 00125 } else if (*n < 0) { 00126 *info = -2; 00127 } else if (*anorm < 0.) { 00128 *info = -5; 00129 } 00130 if (*info != 0) { 00131 i__1 = -(*info); 00132 xerbla_("DSPCON", &i__1); 00133 return 0; 00134 } 00135 00136 /* Quick return if possible */ 00137 00138 *rcond = 0.; 00139 if (*n == 0) { 00140 *rcond = 1.; 00141 return 0; 00142 } else if (*anorm <= 0.) { 00143 return 0; 00144 } 00145 00146 /* Check that the diagonal matrix D is nonsingular. */ 00147 00148 if (upper) { 00149 00150 /* Upper triangular storage: examine D from bottom to top */ 00151 00152 ip = *n * (*n + 1) / 2; 00153 for (i__ = *n; i__ >= 1; --i__) { 00154 if (ipiv[i__] > 0 && ap[ip] == 0.) { 00155 return 0; 00156 } 00157 ip -= i__; 00158 /* L10: */ 00159 } 00160 } else { 00161 00162 /* Lower triangular storage: examine D from top to bottom. */ 00163 00164 ip = 1; 00165 i__1 = *n; 00166 for (i__ = 1; i__ <= i__1; ++i__) { 00167 if (ipiv[i__] > 0 && ap[ip] == 0.) { 00168 return 0; 00169 } 00170 ip = ip + *n - i__ + 1; 00171 /* L20: */ 00172 } 00173 } 00174 00175 /* Estimate the 1-norm of the inverse. */ 00176 00177 kase = 0; 00178 L30: 00179 dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); 00180 if (kase != 0) { 00181 00182 /* Multiply by inv(L*D*L') or inv(U*D*U'). */ 00183 00184 dsptrs_(uplo, n, &c__1, &ap[1], &ipiv[1], &work[1], n, info); 00185 goto L30; 00186 } 00187 00188 /* Compute the estimate of the reciprocal condition number. */ 00189 00190 if (ainvnm != 0.) { 00191 *rcond = 1. / ainvnm / *anorm; 00192 } 00193 00194 return 0; 00195 00196 /* End of DSPCON */ 00197 00198 } /* dspcon_ */