dqlt02.c
Go to the documentation of this file.
00001 /* dqlt02.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Common Block Declarations */
00017 
00018 struct {
00019     char srnamt[32];
00020 } srnamc_;
00021 
00022 #define srnamc_1 srnamc_
00023 
00024 /* Table of constant values */
00025 
00026 static doublereal c_b4 = -1e10;
00027 static doublereal c_b10 = 0.;
00028 static doublereal c_b15 = -1.;
00029 static doublereal c_b16 = 1.;
00030 
00031 /* Subroutine */ int dqlt02_(integer *m, integer *n, integer *k, doublereal *
00032         a, doublereal *af, doublereal *q, doublereal *l, integer *lda, 
00033         doublereal *tau, doublereal *work, integer *lwork, doublereal *rwork, 
00034         doublereal *result)
00035 {
00036     /* System generated locals */
00037     integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, 
00038             q_offset, i__1, i__2;
00039 
00040     /* Builtin functions */
00041     /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
00042 
00043     /* Local variables */
00044     doublereal eps;
00045     integer info;
00046     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
00047             integer *, doublereal *, doublereal *, integer *, doublereal *, 
00048             integer *, doublereal *, doublereal *, integer *);
00049     doublereal resid, anorm;
00050     extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, 
00051             doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
00052              integer *);
00053     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
00054             integer *, doublereal *, integer *, doublereal *);
00055     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
00056             doublereal *, integer *, doublereal *, integer *), 
00057             dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
00058             doublereal *, integer *), dorgql_(integer *, integer *, 
00059             integer *, doublereal *, integer *, doublereal *, doublereal *, 
00060             integer *, integer *);
00061     extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
00062             integer *, doublereal *);
00063 
00064 
00065 /*  -- LAPACK test routine (version 3.1) -- */
00066 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00067 /*     November 2006 */
00068 
00069 /*     .. Scalar Arguments .. */
00070 /*     .. */
00071 /*     .. Array Arguments .. */
00072 /*     .. */
00073 
00074 /*  Purpose */
00075 /*  ======= */
00076 
00077 /*  DQLT02 tests DORGQL, which generates an m-by-n matrix Q with */
00078 /*  orthonornmal columns that is defined as the product of k elementary */
00079 /*  reflectors. */
00080 
00081 /*  Given the QL factorization of an m-by-n matrix A, DQLT02 generates */
00082 /*  the orthogonal matrix Q defined by the factorization of the last k */
00083 /*  columns of A; it compares L(m-n+1:m,n-k+1:n) with */
00084 /*  Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are */
00085 /*  orthonormal. */
00086 
00087 /*  Arguments */
00088 /*  ========= */
00089 
00090 /*  M       (input) INTEGER */
00091 /*          The number of rows of the matrix Q to be generated.  M >= 0. */
00092 
00093 /*  N       (input) INTEGER */
00094 /*          The number of columns of the matrix Q to be generated. */
00095 /*          M >= N >= 0. */
00096 
00097 /*  K       (input) INTEGER */
00098 /*          The number of elementary reflectors whose product defines the */
00099 /*          matrix Q. N >= K >= 0. */
00100 
00101 /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
00102 /*          The m-by-n matrix A which was factorized by DQLT01. */
00103 
00104 /*  AF      (input) DOUBLE PRECISION array, dimension (LDA,N) */
00105 /*          Details of the QL factorization of A, as returned by DGEQLF. */
00106 /*          See DGEQLF for further details. */
00107 
00108 /*  Q       (workspace) DOUBLE PRECISION array, dimension (LDA,N) */
00109 
00110 /*  L       (workspace) DOUBLE PRECISION array, dimension (LDA,N) */
00111 
00112 /*  LDA     (input) INTEGER */
00113 /*          The leading dimension of the arrays A, AF, Q and L. LDA >= M. */
00114 
00115 /*  TAU     (input) DOUBLE PRECISION array, dimension (N) */
00116 /*          The scalar factors of the elementary reflectors corresponding */
00117 /*          to the QL factorization in AF. */
00118 
00119 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK) */
00120 
00121 /*  LWORK   (input) INTEGER */
00122 /*          The dimension of the array WORK. */
00123 
00124 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M) */
00125 
00126 /*  RESULT  (output) DOUBLE PRECISION array, dimension (2) */
00127 /*          The test ratios: */
00128 /*          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) */
00129 /*          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) */
00130 
00131 /*  ===================================================================== */
00132 
00133 /*     .. Parameters .. */
00134 /*     .. */
00135 /*     .. Local Scalars .. */
00136 /*     .. */
00137 /*     .. External Functions .. */
00138 /*     .. */
00139 /*     .. External Subroutines .. */
00140 /*     .. */
00141 /*     .. Intrinsic Functions .. */
00142 /*     .. */
00143 /*     .. Scalars in Common .. */
00144 /*     .. */
00145 /*     .. Common blocks .. */
00146 /*     .. */
00147 /*     .. Executable Statements .. */
00148 
00149 /*     Quick return if possible */
00150 
00151     /* Parameter adjustments */
00152     l_dim1 = *lda;
00153     l_offset = 1 + l_dim1;
00154     l -= l_offset;
00155     q_dim1 = *lda;
00156     q_offset = 1 + q_dim1;
00157     q -= q_offset;
00158     af_dim1 = *lda;
00159     af_offset = 1 + af_dim1;
00160     af -= af_offset;
00161     a_dim1 = *lda;
00162     a_offset = 1 + a_dim1;
00163     a -= a_offset;
00164     --tau;
00165     --work;
00166     --rwork;
00167     --result;
00168 
00169     /* Function Body */
00170     if (*m == 0 || *n == 0 || *k == 0) {
00171         result[1] = 0.;
00172         result[2] = 0.;
00173         return 0;
00174     }
00175 
00176     eps = dlamch_("Epsilon");
00177 
00178 /*     Copy the last k columns of the factorization to the array Q */
00179 
00180     dlaset_("Full", m, n, &c_b4, &c_b4, &q[q_offset], lda);
00181     if (*k < *m) {
00182         i__1 = *m - *k;
00183         dlacpy_("Full", &i__1, k, &af[(*n - *k + 1) * af_dim1 + 1], lda, &q[(*
00184                 n - *k + 1) * q_dim1 + 1], lda);
00185     }
00186     if (*k > 1) {
00187         i__1 = *k - 1;
00188         i__2 = *k - 1;
00189         dlacpy_("Upper", &i__1, &i__2, &af[*m - *k + 1 + (*n - *k + 2) * 
00190                 af_dim1], lda, &q[*m - *k + 1 + (*n - *k + 2) * q_dim1], lda);
00191     }
00192 
00193 /*     Generate the last n columns of the matrix Q */
00194 
00195     s_copy(srnamc_1.srnamt, "DORGQL", (ftnlen)32, (ftnlen)6);
00196     dorgql_(m, n, k, &q[q_offset], lda, &tau[*n - *k + 1], &work[1], lwork, &
00197             info);
00198 
00199 /*     Copy L(m-n+1:m,n-k+1:n) */
00200 
00201     dlaset_("Full", n, k, &c_b10, &c_b10, &l[*m - *n + 1 + (*n - *k + 1) * 
00202             l_dim1], lda);
00203     dlacpy_("Lower", k, k, &af[*m - *k + 1 + (*n - *k + 1) * af_dim1], lda, &
00204             l[*m - *k + 1 + (*n - *k + 1) * l_dim1], lda);
00205 
00206 /*     Compute L(m-n+1:m,n-k+1:n) - Q(1:m,m-n+1:m)' * A(1:m,n-k+1:n) */
00207 
00208     dgemm_("Transpose", "No transpose", n, k, m, &c_b15, &q[q_offset], lda, &
00209             a[(*n - *k + 1) * a_dim1 + 1], lda, &c_b16, &l[*m - *n + 1 + (*n 
00210             - *k + 1) * l_dim1], lda);
00211 
00212 /*     Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . */
00213 
00214     anorm = dlange_("1", m, k, &a[(*n - *k + 1) * a_dim1 + 1], lda, &rwork[1]);
00215     resid = dlange_("1", n, k, &l[*m - *n + 1 + (*n - *k + 1) * l_dim1], lda, 
00216             &rwork[1]);
00217     if (anorm > 0.) {
00218         result[1] = resid / (doublereal) max(1,*m) / anorm / eps;
00219     } else {
00220         result[1] = 0.;
00221     }
00222 
00223 /*     Compute I - Q'*Q */
00224 
00225     dlaset_("Full", n, n, &c_b10, &c_b16, &l[l_offset], lda);
00226     dsyrk_("Upper", "Transpose", n, m, &c_b15, &q[q_offset], lda, &c_b16, &l[
00227             l_offset], lda);
00228 
00229 /*     Compute norm( I - Q'*Q ) / ( M * EPS ) . */
00230 
00231     resid = dlansy_("1", "Upper", n, &l[l_offset], lda, &rwork[1]);
00232 
00233     result[2] = resid / (doublereal) max(1,*m) / eps;
00234 
00235     return 0;
00236 
00237 /*     End of DQLT02 */
00238 
00239 } /* dqlt02_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:48