00001 /* dpttrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static integer c__1 = 1; 00019 static integer c_n1 = -1; 00020 00021 /* Subroutine */ int dpttrs_(integer *n, integer *nrhs, doublereal *d__, 00022 doublereal *e, doublereal *b, integer *ldb, integer *info) 00023 { 00024 /* System generated locals */ 00025 integer b_dim1, b_offset, i__1, i__2, i__3; 00026 00027 /* Local variables */ 00028 integer j, jb, nb; 00029 extern /* Subroutine */ int dptts2_(integer *, integer *, doublereal *, 00030 doublereal *, doublereal *, integer *), xerbla_(char *, integer *); 00031 extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 00032 integer *, integer *); 00033 00034 00035 /* -- LAPACK routine (version 3.2) -- */ 00036 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00037 /* November 2006 */ 00038 00039 /* .. Scalar Arguments .. */ 00040 /* .. */ 00041 /* .. Array Arguments .. */ 00042 /* .. */ 00043 00044 /* Purpose */ 00045 /* ======= */ 00046 00047 /* DPTTRS solves a tridiagonal system of the form */ 00048 /* A * X = B */ 00049 /* using the L*D*L' factorization of A computed by DPTTRF. D is a */ 00050 /* diagonal matrix specified in the vector D, L is a unit bidiagonal */ 00051 /* matrix whose subdiagonal is specified in the vector E, and X and B */ 00052 /* are N by NRHS matrices. */ 00053 00054 /* Arguments */ 00055 /* ========= */ 00056 00057 /* N (input) INTEGER */ 00058 /* The order of the tridiagonal matrix A. N >= 0. */ 00059 00060 /* NRHS (input) INTEGER */ 00061 /* The number of right hand sides, i.e., the number of columns */ 00062 /* of the matrix B. NRHS >= 0. */ 00063 00064 /* D (input) DOUBLE PRECISION array, dimension (N) */ 00065 /* The n diagonal elements of the diagonal matrix D from the */ 00066 /* L*D*L' factorization of A. */ 00067 00068 /* E (input) DOUBLE PRECISION array, dimension (N-1) */ 00069 /* The (n-1) subdiagonal elements of the unit bidiagonal factor */ 00070 /* L from the L*D*L' factorization of A. E can also be regarded */ 00071 /* as the superdiagonal of the unit bidiagonal factor U from the */ 00072 /* factorization A = U'*D*U. */ 00073 00074 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00075 /* On entry, the right hand side vectors B for the system of */ 00076 /* linear equations. */ 00077 /* On exit, the solution vectors, X. */ 00078 00079 /* LDB (input) INTEGER */ 00080 /* The leading dimension of the array B. LDB >= max(1,N). */ 00081 00082 /* INFO (output) INTEGER */ 00083 /* = 0: successful exit */ 00084 /* < 0: if INFO = -k, the k-th argument had an illegal value */ 00085 00086 /* ===================================================================== */ 00087 00088 /* .. Local Scalars .. */ 00089 /* .. */ 00090 /* .. External Functions .. */ 00091 /* .. */ 00092 /* .. External Subroutines .. */ 00093 /* .. */ 00094 /* .. Intrinsic Functions .. */ 00095 /* .. */ 00096 /* .. Executable Statements .. */ 00097 00098 /* Test the input arguments. */ 00099 00100 /* Parameter adjustments */ 00101 --d__; 00102 --e; 00103 b_dim1 = *ldb; 00104 b_offset = 1 + b_dim1; 00105 b -= b_offset; 00106 00107 /* Function Body */ 00108 *info = 0; 00109 if (*n < 0) { 00110 *info = -1; 00111 } else if (*nrhs < 0) { 00112 *info = -2; 00113 } else if (*ldb < max(1,*n)) { 00114 *info = -6; 00115 } 00116 if (*info != 0) { 00117 i__1 = -(*info); 00118 xerbla_("DPTTRS", &i__1); 00119 return 0; 00120 } 00121 00122 /* Quick return if possible */ 00123 00124 if (*n == 0 || *nrhs == 0) { 00125 return 0; 00126 } 00127 00128 /* Determine the number of right-hand sides to solve at a time. */ 00129 00130 if (*nrhs == 1) { 00131 nb = 1; 00132 } else { 00133 /* Computing MAX */ 00134 i__1 = 1, i__2 = ilaenv_(&c__1, "DPTTRS", " ", n, nrhs, &c_n1, &c_n1); 00135 nb = max(i__1,i__2); 00136 } 00137 00138 if (nb >= *nrhs) { 00139 dptts2_(n, nrhs, &d__[1], &e[1], &b[b_offset], ldb); 00140 } else { 00141 i__1 = *nrhs; 00142 i__2 = nb; 00143 for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { 00144 /* Computing MIN */ 00145 i__3 = *nrhs - j + 1; 00146 jb = min(i__3,nb); 00147 dptts2_(n, &jb, &d__[1], &e[1], &b[j * b_dim1 + 1], ldb); 00148 /* L10: */ 00149 } 00150 } 00151 00152 return 0; 00153 00154 /* End of DPTTRS */ 00155 00156 } /* dpttrs_ */