00001 /* dptsv.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Subroutine */ int dptsv_(integer *n, integer *nrhs, doublereal *d__, 00017 doublereal *e, doublereal *b, integer *ldb, integer *info) 00018 { 00019 /* System generated locals */ 00020 integer b_dim1, b_offset, i__1; 00021 00022 /* Local variables */ 00023 extern /* Subroutine */ int xerbla_(char *, integer *), dpttrf_( 00024 integer *, doublereal *, doublereal *, integer *), dpttrs_( 00025 integer *, integer *, doublereal *, doublereal *, doublereal *, 00026 integer *, integer *); 00027 00028 00029 /* -- LAPACK routine (version 3.2) -- */ 00030 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00031 /* November 2006 */ 00032 00033 /* .. Scalar Arguments .. */ 00034 /* .. */ 00035 /* .. Array Arguments .. */ 00036 /* .. */ 00037 00038 /* Purpose */ 00039 /* ======= */ 00040 00041 /* DPTSV computes the solution to a real system of linear equations */ 00042 /* A*X = B, where A is an N-by-N symmetric positive definite tridiagonal */ 00043 /* matrix, and X and B are N-by-NRHS matrices. */ 00044 00045 /* A is factored as A = L*D*L**T, and the factored form of A is then */ 00046 /* used to solve the system of equations. */ 00047 00048 /* Arguments */ 00049 /* ========= */ 00050 00051 /* N (input) INTEGER */ 00052 /* The order of the matrix A. N >= 0. */ 00053 00054 /* NRHS (input) INTEGER */ 00055 /* The number of right hand sides, i.e., the number of columns */ 00056 /* of the matrix B. NRHS >= 0. */ 00057 00058 /* D (input/output) DOUBLE PRECISION array, dimension (N) */ 00059 /* On entry, the n diagonal elements of the tridiagonal matrix */ 00060 /* A. On exit, the n diagonal elements of the diagonal matrix */ 00061 /* D from the factorization A = L*D*L**T. */ 00062 00063 /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */ 00064 /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ 00065 /* matrix A. On exit, the (n-1) subdiagonal elements of the */ 00066 /* unit bidiagonal factor L from the L*D*L**T factorization of */ 00067 /* A. (E can also be regarded as the superdiagonal of the unit */ 00068 /* bidiagonal factor U from the U**T*D*U factorization of A.) */ 00069 00070 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00071 /* On entry, the N-by-NRHS right hand side matrix B. */ 00072 /* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ 00073 00074 /* LDB (input) INTEGER */ 00075 /* The leading dimension of the array B. LDB >= max(1,N). */ 00076 00077 /* INFO (output) INTEGER */ 00078 /* = 0: successful exit */ 00079 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00080 /* > 0: if INFO = i, the leading minor of order i is not */ 00081 /* positive definite, and the solution has not been */ 00082 /* computed. The factorization has not been completed */ 00083 /* unless i = N. */ 00084 00085 /* ===================================================================== */ 00086 00087 /* .. External Subroutines .. */ 00088 /* .. */ 00089 /* .. Intrinsic Functions .. */ 00090 /* .. */ 00091 /* .. Executable Statements .. */ 00092 00093 /* Test the input parameters. */ 00094 00095 /* Parameter adjustments */ 00096 --d__; 00097 --e; 00098 b_dim1 = *ldb; 00099 b_offset = 1 + b_dim1; 00100 b -= b_offset; 00101 00102 /* Function Body */ 00103 *info = 0; 00104 if (*n < 0) { 00105 *info = -1; 00106 } else if (*nrhs < 0) { 00107 *info = -2; 00108 } else if (*ldb < max(1,*n)) { 00109 *info = -6; 00110 } 00111 if (*info != 0) { 00112 i__1 = -(*info); 00113 xerbla_("DPTSV ", &i__1); 00114 return 0; 00115 } 00116 00117 /* Compute the L*D*L' (or U'*D*U) factorization of A. */ 00118 00119 dpttrf_(n, &d__[1], &e[1], info); 00120 if (*info == 0) { 00121 00122 /* Solve the system A*X = B, overwriting B with X. */ 00123 00124 dpttrs_(n, nrhs, &d__[1], &e[1], &b[b_offset], ldb, info); 00125 } 00126 return 0; 00127 00128 /* End of DPTSV */ 00129 00130 } /* dptsv_ */