00001 /* dppt02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b5 = -1.; 00019 static integer c__1 = 1; 00020 static doublereal c_b7 = 1.; 00021 00022 /* Subroutine */ int dppt02_(char *uplo, integer *n, integer *nrhs, 00023 doublereal *a, doublereal *x, integer *ldx, doublereal *b, integer * 00024 ldb, doublereal *rwork, doublereal *resid) 00025 { 00026 /* System generated locals */ 00027 integer b_dim1, b_offset, x_dim1, x_offset, i__1; 00028 doublereal d__1, d__2; 00029 00030 /* Local variables */ 00031 integer j; 00032 doublereal eps; 00033 extern doublereal dasum_(integer *, doublereal *, integer *); 00034 doublereal anorm, bnorm; 00035 extern /* Subroutine */ int dspmv_(char *, integer *, doublereal *, 00036 doublereal *, doublereal *, integer *, doublereal *, doublereal *, 00037 integer *); 00038 doublereal xnorm; 00039 extern doublereal dlamch_(char *), dlansp_(char *, char *, 00040 integer *, doublereal *, doublereal *); 00041 00042 00043 /* -- LAPACK test routine (version 3.1) -- */ 00044 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00045 /* November 2006 */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* DPPT02 computes the residual in the solution of a symmetric system */ 00056 /* of linear equations A*x = b when packed storage is used for the */ 00057 /* coefficient matrix. The ratio computed is */ 00058 00059 /* RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS), */ 00060 00061 /* where EPS is the machine precision. */ 00062 00063 /* Arguments */ 00064 /* ========= */ 00065 00066 /* UPLO (input) CHARACTER*1 */ 00067 /* Specifies whether the upper or lower triangular part of the */ 00068 /* symmetric matrix A is stored: */ 00069 /* = 'U': Upper triangular */ 00070 /* = 'L': Lower triangular */ 00071 00072 /* N (input) INTEGER */ 00073 /* The number of rows and columns of the matrix A. N >= 0. */ 00074 00075 /* NRHS (input) INTEGER */ 00076 /* The number of columns of B, the matrix of right hand sides. */ 00077 /* NRHS >= 0. */ 00078 00079 /* A (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ 00080 /* The original symmetric matrix A, stored as a packed */ 00081 /* triangular matrix. */ 00082 00083 /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00084 /* The computed solution vectors for the system of linear */ 00085 /* equations. */ 00086 00087 /* LDX (input) INTEGER */ 00088 /* The leading dimension of the array X. LDX >= max(1,N). */ 00089 00090 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00091 /* On entry, the right hand side vectors for the system of */ 00092 /* linear equations. */ 00093 /* On exit, B is overwritten with the difference B - A*X. */ 00094 00095 /* LDB (input) INTEGER */ 00096 /* The leading dimension of the array B. LDB >= max(1,N). */ 00097 00098 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00099 00100 /* RESID (output) DOUBLE PRECISION */ 00101 /* The maximum over the number of right hand sides of */ 00102 /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ 00103 00104 /* ===================================================================== */ 00105 00106 /* .. Parameters .. */ 00107 /* .. */ 00108 /* .. Local Scalars .. */ 00109 /* .. */ 00110 /* .. External Functions .. */ 00111 /* .. */ 00112 /* .. External Subroutines .. */ 00113 /* .. */ 00114 /* .. Intrinsic Functions .. */ 00115 /* .. */ 00116 /* .. Executable Statements .. */ 00117 00118 /* Quick exit if N = 0 or NRHS = 0. */ 00119 00120 /* Parameter adjustments */ 00121 --a; 00122 x_dim1 = *ldx; 00123 x_offset = 1 + x_dim1; 00124 x -= x_offset; 00125 b_dim1 = *ldb; 00126 b_offset = 1 + b_dim1; 00127 b -= b_offset; 00128 --rwork; 00129 00130 /* Function Body */ 00131 if (*n <= 0 || *nrhs <= 0) { 00132 *resid = 0.; 00133 return 0; 00134 } 00135 00136 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00137 00138 eps = dlamch_("Epsilon"); 00139 anorm = dlansp_("1", uplo, n, &a[1], &rwork[1]); 00140 if (anorm <= 0.) { 00141 *resid = 1. / eps; 00142 return 0; 00143 } 00144 00145 /* Compute B - A*X for the matrix of right hand sides B. */ 00146 00147 i__1 = *nrhs; 00148 for (j = 1; j <= i__1; ++j) { 00149 dspmv_(uplo, n, &c_b5, &a[1], &x[j * x_dim1 + 1], &c__1, &c_b7, &b[j * 00150 b_dim1 + 1], &c__1); 00151 /* L10: */ 00152 } 00153 00154 /* Compute the maximum over the number of right hand sides of */ 00155 /* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ 00156 00157 *resid = 0.; 00158 i__1 = *nrhs; 00159 for (j = 1; j <= i__1; ++j) { 00160 bnorm = dasum_(n, &b[j * b_dim1 + 1], &c__1); 00161 xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1); 00162 if (xnorm <= 0.) { 00163 *resid = 1. / eps; 00164 } else { 00165 /* Computing MAX */ 00166 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00167 *resid = max(d__1,d__2); 00168 } 00169 /* L20: */ 00170 } 00171 00172 return 0; 00173 00174 /* End of DPPT02 */ 00175 00176 } /* dppt02_ */