00001 /* dpotrs.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b9 = 1.; 00019 00020 /* Subroutine */ int dpotrs_(char *uplo, integer *n, integer *nrhs, 00021 doublereal *a, integer *lda, doublereal *b, integer *ldb, integer * 00022 info) 00023 { 00024 /* System generated locals */ 00025 integer a_dim1, a_offset, b_dim1, b_offset, i__1; 00026 00027 /* Local variables */ 00028 extern logical lsame_(char *, char *); 00029 extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 00030 integer *, integer *, doublereal *, doublereal *, integer *, 00031 doublereal *, integer *); 00032 logical upper; 00033 extern /* Subroutine */ int xerbla_(char *, integer *); 00034 00035 00036 /* -- LAPACK routine (version 3.2) -- */ 00037 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00038 /* November 2006 */ 00039 00040 /* .. Scalar Arguments .. */ 00041 /* .. */ 00042 /* .. Array Arguments .. */ 00043 /* .. */ 00044 00045 /* Purpose */ 00046 /* ======= */ 00047 00048 /* DPOTRS solves a system of linear equations A*X = B with a symmetric */ 00049 /* positive definite matrix A using the Cholesky factorization */ 00050 /* A = U**T*U or A = L*L**T computed by DPOTRF. */ 00051 00052 /* Arguments */ 00053 /* ========= */ 00054 00055 /* UPLO (input) CHARACTER*1 */ 00056 /* = 'U': Upper triangle of A is stored; */ 00057 /* = 'L': Lower triangle of A is stored. */ 00058 00059 /* N (input) INTEGER */ 00060 /* The order of the matrix A. N >= 0. */ 00061 00062 /* NRHS (input) INTEGER */ 00063 /* The number of right hand sides, i.e., the number of columns */ 00064 /* of the matrix B. NRHS >= 0. */ 00065 00066 /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ 00067 /* The triangular factor U or L from the Cholesky factorization */ 00068 /* A = U**T*U or A = L*L**T, as computed by DPOTRF. */ 00069 00070 /* LDA (input) INTEGER */ 00071 /* The leading dimension of the array A. LDA >= max(1,N). */ 00072 00073 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00074 /* On entry, the right hand side matrix B. */ 00075 /* On exit, the solution matrix X. */ 00076 00077 /* LDB (input) INTEGER */ 00078 /* The leading dimension of the array B. LDB >= max(1,N). */ 00079 00080 /* INFO (output) INTEGER */ 00081 /* = 0: successful exit */ 00082 /* < 0: if INFO = -i, the i-th argument had an illegal value */ 00083 00084 /* ===================================================================== */ 00085 00086 /* .. Parameters .. */ 00087 /* .. */ 00088 /* .. Local Scalars .. */ 00089 /* .. */ 00090 /* .. External Functions .. */ 00091 /* .. */ 00092 /* .. External Subroutines .. */ 00093 /* .. */ 00094 /* .. Intrinsic Functions .. */ 00095 /* .. */ 00096 /* .. Executable Statements .. */ 00097 00098 /* Test the input parameters. */ 00099 00100 /* Parameter adjustments */ 00101 a_dim1 = *lda; 00102 a_offset = 1 + a_dim1; 00103 a -= a_offset; 00104 b_dim1 = *ldb; 00105 b_offset = 1 + b_dim1; 00106 b -= b_offset; 00107 00108 /* Function Body */ 00109 *info = 0; 00110 upper = lsame_(uplo, "U"); 00111 if (! upper && ! lsame_(uplo, "L")) { 00112 *info = -1; 00113 } else if (*n < 0) { 00114 *info = -2; 00115 } else if (*nrhs < 0) { 00116 *info = -3; 00117 } else if (*lda < max(1,*n)) { 00118 *info = -5; 00119 } else if (*ldb < max(1,*n)) { 00120 *info = -7; 00121 } 00122 if (*info != 0) { 00123 i__1 = -(*info); 00124 xerbla_("DPOTRS", &i__1); 00125 return 0; 00126 } 00127 00128 /* Quick return if possible */ 00129 00130 if (*n == 0 || *nrhs == 0) { 00131 return 0; 00132 } 00133 00134 if (upper) { 00135 00136 /* Solve A*X = B where A = U'*U. */ 00137 00138 /* Solve U'*X = B, overwriting B with X. */ 00139 00140 dtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b9, &a[ 00141 a_offset], lda, &b[b_offset], ldb); 00142 00143 /* Solve U*X = B, overwriting B with X. */ 00144 00145 dtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b9, & 00146 a[a_offset], lda, &b[b_offset], ldb); 00147 } else { 00148 00149 /* Solve A*X = B where A = L*L'. */ 00150 00151 /* Solve L*X = B, overwriting B with X. */ 00152 00153 dtrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b9, & 00154 a[a_offset], lda, &b[b_offset], ldb); 00155 00156 /* Solve L'*X = B, overwriting B with X. */ 00157 00158 dtrsm_("Left", "Lower", "Transpose", "Non-unit", n, nrhs, &c_b9, &a[ 00159 a_offset], lda, &b[b_offset], ldb); 00160 } 00161 00162 return 0; 00163 00164 /* End of DPOTRS */ 00165 00166 } /* dpotrs_ */