dpot03.c
Go to the documentation of this file.
00001 /* dpot03.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublereal c_b11 = -1.;
00019 static doublereal c_b12 = 0.;
00020 
00021 /* Subroutine */ int dpot03_(char *uplo, integer *n, doublereal *a, integer *
00022         lda, doublereal *ainv, integer *ldainv, doublereal *work, integer *
00023         ldwork, doublereal *rwork, doublereal *rcond, doublereal *resid)
00024 {
00025     /* System generated locals */
00026     integer a_dim1, a_offset, ainv_dim1, ainv_offset, work_dim1, work_offset, 
00027             i__1, i__2;
00028 
00029     /* Local variables */
00030     integer i__, j;
00031     doublereal eps;
00032     extern logical lsame_(char *, char *);
00033     doublereal anorm;
00034     extern /* Subroutine */ int dsymm_(char *, char *, integer *, integer *, 
00035             doublereal *, doublereal *, integer *, doublereal *, integer *, 
00036             doublereal *, doublereal *, integer *);
00037     extern doublereal dlamch_(char *), dlange_(char *, integer *, 
00038             integer *, doublereal *, integer *, doublereal *);
00039     doublereal ainvnm;
00040     extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
00041             integer *, doublereal *);
00042 
00043 
00044 /*  -- LAPACK test routine (version 3.1) -- */
00045 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00046 /*     November 2006 */
00047 
00048 /*     .. Scalar Arguments .. */
00049 /*     .. */
00050 /*     .. Array Arguments .. */
00051 /*     .. */
00052 
00053 /*  Purpose */
00054 /*  ======= */
00055 
00056 /*  DPOT03 computes the residual for a symmetric matrix times its */
00057 /*  inverse: */
00058 /*     norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), */
00059 /*  where EPS is the machine epsilon. */
00060 
00061 /*  Arguments */
00062 /*  ========== */
00063 
00064 /*  UPLO    (input) CHARACTER*1 */
00065 /*          Specifies whether the upper or lower triangular part of the */
00066 /*          symmetric matrix A is stored: */
00067 /*          = 'U':  Upper triangular */
00068 /*          = 'L':  Lower triangular */
00069 
00070 /*  N       (input) INTEGER */
00071 /*          The number of rows and columns of the matrix A.  N >= 0. */
00072 
00073 /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
00074 /*          The original symmetric matrix A. */
00075 
00076 /*  LDA     (input) INTEGER */
00077 /*          The leading dimension of the array A.  LDA >= max(1,N) */
00078 
00079 /*  AINV    (input/output) DOUBLE PRECISION array, dimension (LDAINV,N) */
00080 /*          On entry, the inverse of the matrix A, stored as a symmetric */
00081 /*          matrix in the same format as A. */
00082 /*          In this version, AINV is expanded into a full matrix and */
00083 /*          multiplied by A, so the opposing triangle of AINV will be */
00084 /*          changed; i.e., if the upper triangular part of AINV is */
00085 /*          stored, the lower triangular part will be used as work space. */
00086 
00087 /*  LDAINV  (input) INTEGER */
00088 /*          The leading dimension of the array AINV.  LDAINV >= max(1,N). */
00089 
00090 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,N) */
00091 
00092 /*  LDWORK  (input) INTEGER */
00093 /*          The leading dimension of the array WORK.  LDWORK >= max(1,N). */
00094 
00095 /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */
00096 
00097 /*  RCOND   (output) DOUBLE PRECISION */
00098 /*          The reciprocal of the condition number of A, computed as */
00099 /*          ( 1/norm(A) ) / norm(AINV). */
00100 
00101 /*  RESID   (output) DOUBLE PRECISION */
00102 /*          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) */
00103 
00104 /*  ===================================================================== */
00105 
00106 /*     .. Parameters .. */
00107 /*     .. */
00108 /*     .. Local Scalars .. */
00109 /*     .. */
00110 /*     .. External Functions .. */
00111 /*     .. */
00112 /*     .. External Subroutines .. */
00113 /*     .. */
00114 /*     .. Intrinsic Functions .. */
00115 /*     .. */
00116 /*     .. Executable Statements .. */
00117 
00118 /*     Quick exit if N = 0. */
00119 
00120     /* Parameter adjustments */
00121     a_dim1 = *lda;
00122     a_offset = 1 + a_dim1;
00123     a -= a_offset;
00124     ainv_dim1 = *ldainv;
00125     ainv_offset = 1 + ainv_dim1;
00126     ainv -= ainv_offset;
00127     work_dim1 = *ldwork;
00128     work_offset = 1 + work_dim1;
00129     work -= work_offset;
00130     --rwork;
00131 
00132     /* Function Body */
00133     if (*n <= 0) {
00134         *rcond = 1.;
00135         *resid = 0.;
00136         return 0;
00137     }
00138 
00139 /*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */
00140 
00141     eps = dlamch_("Epsilon");
00142     anorm = dlansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]);
00143     ainvnm = dlansy_("1", uplo, n, &ainv[ainv_offset], ldainv, &rwork[1]);
00144     if (anorm <= 0. || ainvnm <= 0.) {
00145         *rcond = 0.;
00146         *resid = 1. / eps;
00147         return 0;
00148     }
00149     *rcond = 1. / anorm / ainvnm;
00150 
00151 /*     Expand AINV into a full matrix and call DSYMM to multiply */
00152 /*     AINV on the left by A. */
00153 
00154     if (lsame_(uplo, "U")) {
00155         i__1 = *n;
00156         for (j = 1; j <= i__1; ++j) {
00157             i__2 = j - 1;
00158             for (i__ = 1; i__ <= i__2; ++i__) {
00159                 ainv[j + i__ * ainv_dim1] = ainv[i__ + j * ainv_dim1];
00160 /* L10: */
00161             }
00162 /* L20: */
00163         }
00164     } else {
00165         i__1 = *n;
00166         for (j = 1; j <= i__1; ++j) {
00167             i__2 = *n;
00168             for (i__ = j + 1; i__ <= i__2; ++i__) {
00169                 ainv[j + i__ * ainv_dim1] = ainv[i__ + j * ainv_dim1];
00170 /* L30: */
00171             }
00172 /* L40: */
00173         }
00174     }
00175     dsymm_("Left", uplo, n, n, &c_b11, &a[a_offset], lda, &ainv[ainv_offset], 
00176             ldainv, &c_b12, &work[work_offset], ldwork);
00177 
00178 /*     Add the identity matrix to WORK . */
00179 
00180     i__1 = *n;
00181     for (i__ = 1; i__ <= i__1; ++i__) {
00182         work[i__ + i__ * work_dim1] += 1.;
00183 /* L50: */
00184     }
00185 
00186 /*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) */
00187 
00188     *resid = dlange_("1", n, n, &work[work_offset], ldwork, &rwork[1]);
00189 
00190     *resid = *resid * *rcond / eps / (doublereal) (*n);
00191 
00192     return 0;
00193 
00194 /*     End of DPOT03 */
00195 
00196 } /* dpot03_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:48