00001 /* dpot02.f -- translated by f2c (version 20061008). 00002 You must link the resulting object file with libf2c: 00003 on Microsoft Windows system, link with libf2c.lib; 00004 on Linux or Unix systems, link with .../path/to/libf2c.a -lm 00005 or, if you install libf2c.a in a standard place, with -lf2c -lm 00006 -- in that order, at the end of the command line, as in 00007 cc *.o -lf2c -lm 00008 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., 00009 00010 http://www.netlib.org/f2c/libf2c.zip 00011 */ 00012 00013 #include "f2c.h" 00014 #include "blaswrap.h" 00015 00016 /* Table of constant values */ 00017 00018 static doublereal c_b5 = -1.; 00019 static doublereal c_b6 = 1.; 00020 static integer c__1 = 1; 00021 00022 /* Subroutine */ int dpot02_(char *uplo, integer *n, integer *nrhs, 00023 doublereal *a, integer *lda, doublereal *x, integer *ldx, doublereal * 00024 b, integer *ldb, doublereal *rwork, doublereal *resid) 00025 { 00026 /* System generated locals */ 00027 integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; 00028 doublereal d__1, d__2; 00029 00030 /* Local variables */ 00031 integer j; 00032 doublereal eps; 00033 extern doublereal dasum_(integer *, doublereal *, integer *); 00034 doublereal anorm, bnorm; 00035 extern /* Subroutine */ int dsymm_(char *, char *, integer *, integer *, 00036 doublereal *, doublereal *, integer *, doublereal *, integer *, 00037 doublereal *, doublereal *, integer *); 00038 doublereal xnorm; 00039 extern doublereal dlamch_(char *), dlansy_(char *, char *, 00040 integer *, doublereal *, integer *, doublereal *); 00041 00042 00043 /* -- LAPACK test routine (version 3.1) -- */ 00044 /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ 00045 /* November 2006 */ 00046 00047 /* .. Scalar Arguments .. */ 00048 /* .. */ 00049 /* .. Array Arguments .. */ 00050 /* .. */ 00051 00052 /* Purpose */ 00053 /* ======= */ 00054 00055 /* DPOT02 computes the residual for the solution of a symmetric system */ 00056 /* of linear equations A*x = b: */ 00057 00058 /* RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), */ 00059 00060 /* where EPS is the machine epsilon. */ 00061 00062 /* Arguments */ 00063 /* ========= */ 00064 00065 /* UPLO (input) CHARACTER*1 */ 00066 /* Specifies whether the upper or lower triangular part of the */ 00067 /* symmetric matrix A is stored: */ 00068 /* = 'U': Upper triangular */ 00069 /* = 'L': Lower triangular */ 00070 00071 /* N (input) INTEGER */ 00072 /* The number of rows and columns of the matrix A. N >= 0. */ 00073 00074 /* NRHS (input) INTEGER */ 00075 /* The number of columns of B, the matrix of right hand sides. */ 00076 /* NRHS >= 0. */ 00077 00078 /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ 00079 /* The original symmetric matrix A. */ 00080 00081 /* LDA (input) INTEGER */ 00082 /* The leading dimension of the array A. LDA >= max(1,N) */ 00083 00084 /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ 00085 /* The computed solution vectors for the system of linear */ 00086 /* equations. */ 00087 00088 /* LDX (input) INTEGER */ 00089 /* The leading dimension of the array X. LDX >= max(1,N). */ 00090 00091 /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ 00092 /* On entry, the right hand side vectors for the system of */ 00093 /* linear equations. */ 00094 /* On exit, B is overwritten with the difference B - A*X. */ 00095 00096 /* LDB (input) INTEGER */ 00097 /* The leading dimension of the array B. LDB >= max(1,N). */ 00098 00099 /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ 00100 00101 /* RESID (output) DOUBLE PRECISION */ 00102 /* The maximum over the number of right hand sides of */ 00103 /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ 00104 00105 /* ===================================================================== */ 00106 00107 /* .. Parameters .. */ 00108 /* .. */ 00109 /* .. Local Scalars .. */ 00110 /* .. */ 00111 /* .. External Functions .. */ 00112 /* .. */ 00113 /* .. External Subroutines .. */ 00114 /* .. */ 00115 /* .. Intrinsic Functions .. */ 00116 /* .. */ 00117 /* .. Executable Statements .. */ 00118 00119 /* Quick exit if N = 0 or NRHS = 0. */ 00120 00121 /* Parameter adjustments */ 00122 a_dim1 = *lda; 00123 a_offset = 1 + a_dim1; 00124 a -= a_offset; 00125 x_dim1 = *ldx; 00126 x_offset = 1 + x_dim1; 00127 x -= x_offset; 00128 b_dim1 = *ldb; 00129 b_offset = 1 + b_dim1; 00130 b -= b_offset; 00131 --rwork; 00132 00133 /* Function Body */ 00134 if (*n <= 0 || *nrhs <= 0) { 00135 *resid = 0.; 00136 return 0; 00137 } 00138 00139 /* Exit with RESID = 1/EPS if ANORM = 0. */ 00140 00141 eps = dlamch_("Epsilon"); 00142 anorm = dlansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]); 00143 if (anorm <= 0.) { 00144 *resid = 1. / eps; 00145 return 0; 00146 } 00147 00148 /* Compute B - A*X */ 00149 00150 dsymm_("Left", uplo, n, nrhs, &c_b5, &a[a_offset], lda, &x[x_offset], ldx, 00151 &c_b6, &b[b_offset], ldb); 00152 00153 /* Compute the maximum over the number of right hand sides of */ 00154 /* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ 00155 00156 *resid = 0.; 00157 i__1 = *nrhs; 00158 for (j = 1; j <= i__1; ++j) { 00159 bnorm = dasum_(n, &b[j * b_dim1 + 1], &c__1); 00160 xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1); 00161 if (xnorm <= 0.) { 00162 *resid = 1. / eps; 00163 } else { 00164 /* Computing MAX */ 00165 d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; 00166 *resid = max(d__1,d__2); 00167 } 00168 /* L10: */ 00169 } 00170 00171 return 0; 00172 00173 /* End of DPOT02 */ 00174 00175 } /* dpot02_ */