dposvx.c
Go to the documentation of this file.
00001 /* dposvx.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Subroutine */ int dposvx_(char *fact, char *uplo, integer *n, integer *
00017         nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 
00018         char *equed, doublereal *s, doublereal *b, integer *ldb, doublereal *
00019         x, integer *ldx, doublereal *rcond, doublereal *ferr, doublereal *
00020         berr, doublereal *work, integer *iwork, integer *info)
00021 {
00022     /* System generated locals */
00023     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
00024             x_offset, i__1, i__2;
00025     doublereal d__1, d__2;
00026 
00027     /* Local variables */
00028     integer i__, j;
00029     doublereal amax, smin, smax;
00030     extern logical lsame_(char *, char *);
00031     doublereal scond, anorm;
00032     logical equil, rcequ;
00033     extern doublereal dlamch_(char *);
00034     logical nofact;
00035     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
00036             doublereal *, integer *, doublereal *, integer *), 
00037             xerbla_(char *, integer *);
00038     doublereal bignum;
00039     extern /* Subroutine */ int dpocon_(char *, integer *, doublereal *, 
00040             integer *, doublereal *, doublereal *, doublereal *, integer *, 
00041             integer *);
00042     integer infequ;
00043     extern doublereal dlansy_(char *, char *, integer *, doublereal *, 
00044             integer *, doublereal *);
00045     extern /* Subroutine */ int dlaqsy_(char *, integer *, doublereal *, 
00046             integer *, doublereal *, doublereal *, doublereal *, char *), dpoequ_(integer *, doublereal *, integer *, 
00047             doublereal *, doublereal *, doublereal *, integer *), dporfs_(
00048             char *, integer *, integer *, doublereal *, integer *, doublereal 
00049             *, integer *, doublereal *, integer *, doublereal *, integer *, 
00050             doublereal *, doublereal *, doublereal *, integer *, integer *), dpotrf_(char *, integer *, doublereal *, integer *, 
00051             integer *);
00052     doublereal smlnum;
00053     extern /* Subroutine */ int dpotrs_(char *, integer *, integer *, 
00054             doublereal *, integer *, doublereal *, integer *, integer *);
00055 
00056 
00057 /*  -- LAPACK driver routine (version 3.2) -- */
00058 /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
00059 /*     November 2006 */
00060 
00061 /*     .. Scalar Arguments .. */
00062 /*     .. */
00063 /*     .. Array Arguments .. */
00064 /*     .. */
00065 
00066 /*  Purpose */
00067 /*  ======= */
00068 
00069 /*  DPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
00070 /*  compute the solution to a real system of linear equations */
00071 /*     A * X = B, */
00072 /*  where A is an N-by-N symmetric positive definite matrix and X and B */
00073 /*  are N-by-NRHS matrices. */
00074 
00075 /*  Error bounds on the solution and a condition estimate are also */
00076 /*  provided. */
00077 
00078 /*  Description */
00079 /*  =========== */
00080 
00081 /*  The following steps are performed: */
00082 
00083 /*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
00084 /*     the system: */
00085 /*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
00086 /*     Whether or not the system will be equilibrated depends on the */
00087 /*     scaling of the matrix A, but if equilibration is used, A is */
00088 /*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
00089 
00090 /*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
00091 /*     factor the matrix A (after equilibration if FACT = 'E') as */
00092 /*        A = U**T* U,  if UPLO = 'U', or */
00093 /*        A = L * L**T,  if UPLO = 'L', */
00094 /*     where U is an upper triangular matrix and L is a lower triangular */
00095 /*     matrix. */
00096 
00097 /*  3. If the leading i-by-i principal minor is not positive definite, */
00098 /*     then the routine returns with INFO = i. Otherwise, the factored */
00099 /*     form of A is used to estimate the condition number of the matrix */
00100 /*     A.  If the reciprocal of the condition number is less than machine */
00101 /*     precision, INFO = N+1 is returned as a warning, but the routine */
00102 /*     still goes on to solve for X and compute error bounds as */
00103 /*     described below. */
00104 
00105 /*  4. The system of equations is solved for X using the factored form */
00106 /*     of A. */
00107 
00108 /*  5. Iterative refinement is applied to improve the computed solution */
00109 /*     matrix and calculate error bounds and backward error estimates */
00110 /*     for it. */
00111 
00112 /*  6. If equilibration was used, the matrix X is premultiplied by */
00113 /*     diag(S) so that it solves the original system before */
00114 /*     equilibration. */
00115 
00116 /*  Arguments */
00117 /*  ========= */
00118 
00119 /*  FACT    (input) CHARACTER*1 */
00120 /*          Specifies whether or not the factored form of the matrix A is */
00121 /*          supplied on entry, and if not, whether the matrix A should be */
00122 /*          equilibrated before it is factored. */
00123 /*          = 'F':  On entry, AF contains the factored form of A. */
00124 /*                  If EQUED = 'Y', the matrix A has been equilibrated */
00125 /*                  with scaling factors given by S.  A and AF will not */
00126 /*                  be modified. */
00127 /*          = 'N':  The matrix A will be copied to AF and factored. */
00128 /*          = 'E':  The matrix A will be equilibrated if necessary, then */
00129 /*                  copied to AF and factored. */
00130 
00131 /*  UPLO    (input) CHARACTER*1 */
00132 /*          = 'U':  Upper triangle of A is stored; */
00133 /*          = 'L':  Lower triangle of A is stored. */
00134 
00135 /*  N       (input) INTEGER */
00136 /*          The number of linear equations, i.e., the order of the */
00137 /*          matrix A.  N >= 0. */
00138 
00139 /*  NRHS    (input) INTEGER */
00140 /*          The number of right hand sides, i.e., the number of columns */
00141 /*          of the matrices B and X.  NRHS >= 0. */
00142 
00143 /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
00144 /*          On entry, the symmetric matrix A, except if FACT = 'F' and */
00145 /*          EQUED = 'Y', then A must contain the equilibrated matrix */
00146 /*          diag(S)*A*diag(S).  If UPLO = 'U', the leading */
00147 /*          N-by-N upper triangular part of A contains the upper */
00148 /*          triangular part of the matrix A, and the strictly lower */
00149 /*          triangular part of A is not referenced.  If UPLO = 'L', the */
00150 /*          leading N-by-N lower triangular part of A contains the lower */
00151 /*          triangular part of the matrix A, and the strictly upper */
00152 /*          triangular part of A is not referenced.  A is not modified if */
00153 /*          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
00154 
00155 /*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
00156 /*          diag(S)*A*diag(S). */
00157 
00158 /*  LDA     (input) INTEGER */
00159 /*          The leading dimension of the array A.  LDA >= max(1,N). */
00160 
00161 /*  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N) */
00162 /*          If FACT = 'F', then AF is an input argument and on entry */
00163 /*          contains the triangular factor U or L from the Cholesky */
00164 /*          factorization A = U**T*U or A = L*L**T, in the same storage */
00165 /*          format as A.  If EQUED .ne. 'N', then AF is the factored form */
00166 /*          of the equilibrated matrix diag(S)*A*diag(S). */
00167 
00168 /*          If FACT = 'N', then AF is an output argument and on exit */
00169 /*          returns the triangular factor U or L from the Cholesky */
00170 /*          factorization A = U**T*U or A = L*L**T of the original */
00171 /*          matrix A. */
00172 
00173 /*          If FACT = 'E', then AF is an output argument and on exit */
00174 /*          returns the triangular factor U or L from the Cholesky */
00175 /*          factorization A = U**T*U or A = L*L**T of the equilibrated */
00176 /*          matrix A (see the description of A for the form of the */
00177 /*          equilibrated matrix). */
00178 
00179 /*  LDAF    (input) INTEGER */
00180 /*          The leading dimension of the array AF.  LDAF >= max(1,N). */
00181 
00182 /*  EQUED   (input or output) CHARACTER*1 */
00183 /*          Specifies the form of equilibration that was done. */
00184 /*          = 'N':  No equilibration (always true if FACT = 'N'). */
00185 /*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
00186 /*                  diag(S) * A * diag(S). */
00187 /*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
00188 /*          output argument. */
00189 
00190 /*  S       (input or output) DOUBLE PRECISION array, dimension (N) */
00191 /*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
00192 /*          an input argument if FACT = 'F'; otherwise, S is an output */
00193 /*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
00194 /*          must be positive. */
00195 
00196 /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
00197 /*          On entry, the N-by-NRHS right hand side matrix B. */
00198 /*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
00199 /*          B is overwritten by diag(S) * B. */
00200 
00201 /*  LDB     (input) INTEGER */
00202 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00203 
00204 /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
00205 /*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
00206 /*          the original system of equations.  Note that if EQUED = 'Y', */
00207 /*          A and B are modified on exit, and the solution to the */
00208 /*          equilibrated system is inv(diag(S))*X. */
00209 
00210 /*  LDX     (input) INTEGER */
00211 /*          The leading dimension of the array X.  LDX >= max(1,N). */
00212 
00213 /*  RCOND   (output) DOUBLE PRECISION */
00214 /*          The estimate of the reciprocal condition number of the matrix */
00215 /*          A after equilibration (if done).  If RCOND is less than the */
00216 /*          machine precision (in particular, if RCOND = 0), the matrix */
00217 /*          is singular to working precision.  This condition is */
00218 /*          indicated by a return code of INFO > 0. */
00219 
00220 /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
00221 /*          The estimated forward error bound for each solution vector */
00222 /*          X(j) (the j-th column of the solution matrix X). */
00223 /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
00224 /*          is an estimated upper bound for the magnitude of the largest */
00225 /*          element in (X(j) - XTRUE) divided by the magnitude of the */
00226 /*          largest element in X(j).  The estimate is as reliable as */
00227 /*          the estimate for RCOND, and is almost always a slight */
00228 /*          overestimate of the true error. */
00229 
00230 /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
00231 /*          The componentwise relative backward error of each solution */
00232 /*          vector X(j) (i.e., the smallest relative change in */
00233 /*          any element of A or B that makes X(j) an exact solution). */
00234 
00235 /*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */
00236 
00237 /*  IWORK   (workspace) INTEGER array, dimension (N) */
00238 
00239 /*  INFO    (output) INTEGER */
00240 /*          = 0: successful exit */
00241 /*          < 0: if INFO = -i, the i-th argument had an illegal value */
00242 /*          > 0: if INFO = i, and i is */
00243 /*                <= N:  the leading minor of order i of A is */
00244 /*                       not positive definite, so the factorization */
00245 /*                       could not be completed, and the solution has not */
00246 /*                       been computed. RCOND = 0 is returned. */
00247 /*                = N+1: U is nonsingular, but RCOND is less than machine */
00248 /*                       precision, meaning that the matrix is singular */
00249 /*                       to working precision.  Nevertheless, the */
00250 /*                       solution and error bounds are computed because */
00251 /*                       there are a number of situations where the */
00252 /*                       computed solution can be more accurate than the */
00253 /*                       value of RCOND would suggest. */
00254 
00255 /*  ===================================================================== */
00256 
00257 /*     .. Parameters .. */
00258 /*     .. */
00259 /*     .. Local Scalars .. */
00260 /*     .. */
00261 /*     .. External Functions .. */
00262 /*     .. */
00263 /*     .. External Subroutines .. */
00264 /*     .. */
00265 /*     .. Intrinsic Functions .. */
00266 /*     .. */
00267 /*     .. Executable Statements .. */
00268 
00269     /* Parameter adjustments */
00270     a_dim1 = *lda;
00271     a_offset = 1 + a_dim1;
00272     a -= a_offset;
00273     af_dim1 = *ldaf;
00274     af_offset = 1 + af_dim1;
00275     af -= af_offset;
00276     --s;
00277     b_dim1 = *ldb;
00278     b_offset = 1 + b_dim1;
00279     b -= b_offset;
00280     x_dim1 = *ldx;
00281     x_offset = 1 + x_dim1;
00282     x -= x_offset;
00283     --ferr;
00284     --berr;
00285     --work;
00286     --iwork;
00287 
00288     /* Function Body */
00289     *info = 0;
00290     nofact = lsame_(fact, "N");
00291     equil = lsame_(fact, "E");
00292     if (nofact || equil) {
00293         *(unsigned char *)equed = 'N';
00294         rcequ = FALSE_;
00295     } else {
00296         rcequ = lsame_(equed, "Y");
00297         smlnum = dlamch_("Safe minimum");
00298         bignum = 1. / smlnum;
00299     }
00300 
00301 /*     Test the input parameters. */
00302 
00303     if (! nofact && ! equil && ! lsame_(fact, "F")) {
00304         *info = -1;
00305     } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
00306             "L")) {
00307         *info = -2;
00308     } else if (*n < 0) {
00309         *info = -3;
00310     } else if (*nrhs < 0) {
00311         *info = -4;
00312     } else if (*lda < max(1,*n)) {
00313         *info = -6;
00314     } else if (*ldaf < max(1,*n)) {
00315         *info = -8;
00316     } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
00317             equed, "N"))) {
00318         *info = -9;
00319     } else {
00320         if (rcequ) {
00321             smin = bignum;
00322             smax = 0.;
00323             i__1 = *n;
00324             for (j = 1; j <= i__1; ++j) {
00325 /* Computing MIN */
00326                 d__1 = smin, d__2 = s[j];
00327                 smin = min(d__1,d__2);
00328 /* Computing MAX */
00329                 d__1 = smax, d__2 = s[j];
00330                 smax = max(d__1,d__2);
00331 /* L10: */
00332             }
00333             if (smin <= 0.) {
00334                 *info = -10;
00335             } else if (*n > 0) {
00336                 scond = max(smin,smlnum) / min(smax,bignum);
00337             } else {
00338                 scond = 1.;
00339             }
00340         }
00341         if (*info == 0) {
00342             if (*ldb < max(1,*n)) {
00343                 *info = -12;
00344             } else if (*ldx < max(1,*n)) {
00345                 *info = -14;
00346             }
00347         }
00348     }
00349 
00350     if (*info != 0) {
00351         i__1 = -(*info);
00352         xerbla_("DPOSVX", &i__1);
00353         return 0;
00354     }
00355 
00356     if (equil) {
00357 
00358 /*        Compute row and column scalings to equilibrate the matrix A. */
00359 
00360         dpoequ_(n, &a[a_offset], lda, &s[1], &scond, &amax, &infequ);
00361         if (infequ == 0) {
00362 
00363 /*           Equilibrate the matrix. */
00364 
00365             dlaqsy_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed);
00366             rcequ = lsame_(equed, "Y");
00367         }
00368     }
00369 
00370 /*     Scale the right hand side. */
00371 
00372     if (rcequ) {
00373         i__1 = *nrhs;
00374         for (j = 1; j <= i__1; ++j) {
00375             i__2 = *n;
00376             for (i__ = 1; i__ <= i__2; ++i__) {
00377                 b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
00378 /* L20: */
00379             }
00380 /* L30: */
00381         }
00382     }
00383 
00384     if (nofact || equil) {
00385 
00386 /*        Compute the Cholesky factorization A = U'*U or A = L*L'. */
00387 
00388         dlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
00389         dpotrf_(uplo, n, &af[af_offset], ldaf, info);
00390 
00391 /*        Return if INFO is non-zero. */
00392 
00393         if (*info > 0) {
00394             *rcond = 0.;
00395             return 0;
00396         }
00397     }
00398 
00399 /*     Compute the norm of the matrix A. */
00400 
00401     anorm = dlansy_("1", uplo, n, &a[a_offset], lda, &work[1]);
00402 
00403 /*     Compute the reciprocal of the condition number of A. */
00404 
00405     dpocon_(uplo, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1], 
00406              info);
00407 
00408 /*     Compute the solution matrix X. */
00409 
00410     dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
00411     dpotrs_(uplo, n, nrhs, &af[af_offset], ldaf, &x[x_offset], ldx, info);
00412 
00413 /*     Use iterative refinement to improve the computed solution and */
00414 /*     compute error bounds and backward error estimates for it. */
00415 
00416     dporfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &b[
00417             b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1], &
00418             iwork[1], info);
00419 
00420 /*     Transform the solution matrix X to a solution of the original */
00421 /*     system. */
00422 
00423     if (rcequ) {
00424         i__1 = *nrhs;
00425         for (j = 1; j <= i__1; ++j) {
00426             i__2 = *n;
00427             for (i__ = 1; i__ <= i__2; ++i__) {
00428                 x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
00429 /* L40: */
00430             }
00431 /* L50: */
00432         }
00433         i__1 = *nrhs;
00434         for (j = 1; j <= i__1; ++j) {
00435             ferr[j] /= scond;
00436 /* L60: */
00437         }
00438     }
00439 
00440 /*     Set INFO = N+1 if the matrix is singular to working precision. */
00441 
00442     if (*rcond < dlamch_("Epsilon")) {
00443         *info = *n + 1;
00444     }
00445 
00446     return 0;
00447 
00448 /*     End of DPOSVX */
00449 
00450 } /* dposvx_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:47