dpftrs.c
Go to the documentation of this file.
00001 /* dpftrs.f -- translated by f2c (version 20061008).
00002    You must link the resulting object file with libf2c:
00003         on Microsoft Windows system, link with libf2c.lib;
00004         on Linux or Unix systems, link with .../path/to/libf2c.a -lm
00005         or, if you install libf2c.a in a standard place, with -lf2c -lm
00006         -- in that order, at the end of the command line, as in
00007                 cc *.o -lf2c -lm
00008         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
00009 
00010                 http://www.netlib.org/f2c/libf2c.zip
00011 */
00012 
00013 #include "f2c.h"
00014 #include "blaswrap.h"
00015 
00016 /* Table of constant values */
00017 
00018 static doublereal c_b10 = 1.;
00019 
00020 /* Subroutine */ int dpftrs_(char *transr, char *uplo, integer *n, integer *
00021         nrhs, doublereal *a, doublereal *b, integer *ldb, integer *info)
00022 {
00023     /* System generated locals */
00024     integer b_dim1, b_offset, i__1;
00025 
00026     /* Local variables */
00027     logical normaltransr;
00028     extern logical lsame_(char *, char *);
00029     extern /* Subroutine */ int dtfsm_(char *, char *, char *, char *, char *, 
00030              integer *, integer *, doublereal *, doublereal *, doublereal *, 
00031             integer *);
00032     logical lower;
00033     extern /* Subroutine */ int xerbla_(char *, integer *);
00034 
00035 
00036 /*  -- LAPACK routine (version 3.2)                                    -- */
00037 
00038 /*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
00039 /*  -- November 2008                                                   -- */
00040 
00041 /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
00042 /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
00043 
00044 /*     .. Scalar Arguments .. */
00045 /*     .. */
00046 /*     .. Array Arguments .. */
00047 /*     .. */
00048 
00049 /*  Purpose */
00050 /*  ======= */
00051 
00052 /*  DPFTRS solves a system of linear equations A*X = B with a symmetric */
00053 /*  positive definite matrix A using the Cholesky factorization */
00054 /*  A = U**T*U or A = L*L**T computed by DPFTRF. */
00055 
00056 /*  Arguments */
00057 /*  ========= */
00058 
00059 /*  TRANSR    (input) CHARACTER */
00060 /*          = 'N':  The Normal TRANSR of RFP A is stored; */
00061 /*          = 'T':  The Transpose TRANSR of RFP A is stored. */
00062 
00063 /*  UPLO    (input) CHARACTER */
00064 /*          = 'U':  Upper triangle of RFP A is stored; */
00065 /*          = 'L':  Lower triangle of RFP A is stored. */
00066 
00067 /*  N       (input) INTEGER */
00068 /*          The order of the matrix A.  N >= 0. */
00069 
00070 /*  NRHS    (input) INTEGER */
00071 /*          The number of right hand sides, i.e., the number of columns */
00072 /*          of the matrix B.  NRHS >= 0. */
00073 
00074 /*  A       (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ). */
00075 /*          The triangular factor U or L from the Cholesky factorization */
00076 /*          of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF. */
00077 /*          See note below for more details about RFP A. */
00078 
00079 /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
00080 /*          On entry, the right hand side matrix B. */
00081 /*          On exit, the solution matrix X. */
00082 
00083 /*  LDB     (input) INTEGER */
00084 /*          The leading dimension of the array B.  LDB >= max(1,N). */
00085 
00086 /*  INFO    (output) INTEGER */
00087 /*          = 0:  successful exit */
00088 /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
00089 
00090 /*  Notes */
00091 /*  ===== */
00092 
00093 /*  We first consider Rectangular Full Packed (RFP) Format when N is */
00094 /*  even. We give an example where N = 6. */
00095 
00096 /*      AP is Upper             AP is Lower */
00097 
00098 /*   00 01 02 03 04 05       00 */
00099 /*      11 12 13 14 15       10 11 */
00100 /*         22 23 24 25       20 21 22 */
00101 /*            33 34 35       30 31 32 33 */
00102 /*               44 45       40 41 42 43 44 */
00103 /*                  55       50 51 52 53 54 55 */
00104 
00105 
00106 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00107 /*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
00108 /*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
00109 /*  the transpose of the first three columns of AP upper. */
00110 /*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
00111 /*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
00112 /*  the transpose of the last three columns of AP lower. */
00113 /*  This covers the case N even and TRANSR = 'N'. */
00114 
00115 /*         RFP A                   RFP A */
00116 
00117 /*        03 04 05                33 43 53 */
00118 /*        13 14 15                00 44 54 */
00119 /*        23 24 25                10 11 55 */
00120 /*        33 34 35                20 21 22 */
00121 /*        00 44 45                30 31 32 */
00122 /*        01 11 55                40 41 42 */
00123 /*        02 12 22                50 51 52 */
00124 
00125 /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
00126 /*  transpose of RFP A above. One therefore gets: */
00127 
00128 
00129 /*           RFP A                   RFP A */
00130 
00131 /*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
00132 /*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
00133 /*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
00134 
00135 
00136 /*  We first consider Rectangular Full Packed (RFP) Format when N is */
00137 /*  odd. We give an example where N = 5. */
00138 
00139 /*     AP is Upper                 AP is Lower */
00140 
00141 /*   00 01 02 03 04              00 */
00142 /*      11 12 13 14              10 11 */
00143 /*         22 23 24              20 21 22 */
00144 /*            33 34              30 31 32 33 */
00145 /*               44              40 41 42 43 44 */
00146 
00147 
00148 /*  Let TRANSR = 'N'. RFP holds AP as follows: */
00149 /*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
00150 /*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
00151 /*  the transpose of the first two columns of AP upper. */
00152 /*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
00153 /*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
00154 /*  the transpose of the last two columns of AP lower. */
00155 /*  This covers the case N odd and TRANSR = 'N'. */
00156 
00157 /*         RFP A                   RFP A */
00158 
00159 /*        02 03 04                00 33 43 */
00160 /*        12 13 14                10 11 44 */
00161 /*        22 23 24                20 21 22 */
00162 /*        00 33 34                30 31 32 */
00163 /*        01 11 44                40 41 42 */
00164 
00165 /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
00166 /*  transpose of RFP A above. One therefore gets: */
00167 
00168 /*           RFP A                   RFP A */
00169 
00170 /*     02 12 22 00 01             00 10 20 30 40 50 */
00171 /*     03 13 23 33 11             33 11 21 31 41 51 */
00172 /*     04 14 24 34 44             43 44 22 32 42 52 */
00173 
00174 /*  ===================================================================== */
00175 
00176 /*     .. Parameters .. */
00177 /*     .. */
00178 /*     .. Local Scalars .. */
00179 /*     .. */
00180 /*     .. External Functions .. */
00181 /*     .. */
00182 /*     .. External Subroutines .. */
00183 /*     .. */
00184 /*     .. Intrinsic Functions .. */
00185 /*     .. */
00186 /*     .. Executable Statements .. */
00187 
00188 /*     Test the input parameters. */
00189 
00190     /* Parameter adjustments */
00191     b_dim1 = *ldb;
00192     b_offset = 1 + b_dim1;
00193     b -= b_offset;
00194 
00195     /* Function Body */
00196     *info = 0;
00197     normaltransr = lsame_(transr, "N");
00198     lower = lsame_(uplo, "L");
00199     if (! normaltransr && ! lsame_(transr, "T")) {
00200         *info = -1;
00201     } else if (! lower && ! lsame_(uplo, "U")) {
00202         *info = -2;
00203     } else if (*n < 0) {
00204         *info = -3;
00205     } else if (*nrhs < 0) {
00206         *info = -4;
00207     } else if (*ldb < max(1,*n)) {
00208         *info = -7;
00209     }
00210     if (*info != 0) {
00211         i__1 = -(*info);
00212         xerbla_("DPFTRS", &i__1);
00213         return 0;
00214     }
00215 
00216 /*     Quick return if possible */
00217 
00218     if (*n == 0 || *nrhs == 0) {
00219         return 0;
00220     }
00221 
00222 /*     start execution: there are two triangular solves */
00223 
00224     if (lower) {
00225         dtfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b10, a, &b[b_offset], 
00226                 ldb);
00227         dtfsm_(transr, "L", uplo, "T", "N", n, nrhs, &c_b10, a, &b[b_offset], 
00228                 ldb);
00229     } else {
00230         dtfsm_(transr, "L", uplo, "T", "N", n, nrhs, &c_b10, a, &b[b_offset], 
00231                 ldb);
00232         dtfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b10, a, &b[b_offset], 
00233                 ldb);
00234     }
00235 
00236     return 0;
00237 
00238 /*     End of DPFTRS */
00239 
00240 } /* dpftrs_ */


swiftnav
Author(s):
autogenerated on Sat Jun 8 2019 18:55:47